Alec R Sandy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2082337/publications.pdf

Version: 2024-02-01

112	3,454	27 h-index	56
papers	citations		g-index
114	114	114	3753
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>pyXPCSviewer</i> : an open-source interactive tool for X-ray photon correlation spectroscopy visualization and analysis. Journal of Synchrotron Radiation, 2022, 29, 1122-1129.	2.4	6
2	20â€Âµs-resolved high-throughput X-ray photon correlation spectroscopy on a 500k pixel detector enabled by data-management workflow. Journal of Synchrotron Radiation, 2021, 28, 259-265.	2.4	17
3	Evolution of single gyroid photonic crystals in bird feathers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
4	Nanoscale Critical Phenomena in a Complex Fluid Studied by X-Ray Photon Correlation Spectroscopy. Physical Review Letters, 2020, 125, 125504.	7.8	16
5	Brilliant angle-independent structural colours preserved in weevil scales from the Swiss Pleistocene. Biology Letters, 2020, 16, 20200063.	2.3	4
6	Focusing a round coherent beam by spatial filtering the horizontal source. Journal of Synchrotron Radiation, 2020, 27, 1528-1538.	2.4	4
7	Characterization of Droplet Nucleation Inside Supercritical Ethylene Jets Using Small-Angle X-Ray Scattering Technique., 2020,, 333-363.		2
8	Evolution of structure and dynamics of thermo-reversible nanoparticle gelsâ€"A combined XPCS and rheology study. Journal of Chemical Physics, 2019, 151, 104902.	3.0	6
9	Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions. Physical Review E, 2018, 97, 020601.	2.1	24
10	Unraveling the Role of Order-to-Disorder Transition in Shear Thickening Suspensions. Physical Review Letters, 2018, 120, 028002.	7.8	24
11	A Printingâ€Centric Approach to the Electrostatic Modification of Polymer/Clay Composites for Use in 3D Directâ€Ink Writing. Advanced Materials Interfaces, 2018, 5, 1701579.	3.7	8
12	Hard X-Ray Photon Correlation Spectroscopy Methods for Materials Studies. Annual Review of Materials Research, 2018, 48, 167-190.	9.3	47
13	Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes. Macromolecules, 2018, 51, 2591-2603.	4.8	26
14	Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector. Journal of Synchrotron Radiation, 2018, 25, 1408-1416.	2.4	41
15	Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers. Physical Review E, 2018, 97, 052803.	2.1	8
16	Universal aging characteristics of macroscopically and microscopically dissimilar metallic glasses. Acta Materialia, 2018, 155, 35-42.	7.9	5
17	Distributed X-ray photon correlation spectroscopy data reduction using Hadoop <i>MapReduce</i> Journal of Synchrotron Radiation, 2018, 25, 1135-1143.	2.4	17
18	Dynamics in hard condensed matter probed by X-ray photon correlation spectroscopy: Present and beyond. Current Opinion in Solid State and Materials Science, 2018, 22, 202-212.	11.5	16

#	Article	IF	CITATIONS
19	Thermal Fluctuations of Ferroelectric Nanodomains in a Ferroelectric-Dielectric <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>nml:mn><</td><td>/mml:msub></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nml : mn><	/mml:msub>
20	Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations. Physical Review Letters, 2017, 119, 178006.	7.8	31
21	Radiation damage limits to XPCS studies of protein dynamics. AIP Conference Proceedings, 2016, , .	0.4	8
22	Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit. Optics Express, 2016, 24, 355.	3.4	4
23	Multiple dynamic regimes in colloidâ€polymer dispersions: New insight using Xâ€ray photon correlation spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 752-760.	2.1	11
24	The Static Structure and Dynamics of Cadmium Sulfide Nanoparticles within Poly(styreneâ€∢i>blockâ€isoprene) Diblock Copolymer Melts. Macromolecular Chemistry and Physics, 2016, 217, 591-598.	2.2	3
25	On the influence of monochromator thermal deformations on X-ray focusing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820, 164-171.	1.6	3
26	Partial glass isosymmetry transition in multiferroic hexagonalErMnO3. Physical Review B, 2016, 93, .	3.2	7
27	Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums. Soft Matter, 2016, 12, 9321-9329.	2.7	14
28	Direct measurement of the propagation velocity of defects using coherent X-rays. Nature Physics, 2016, 12, 794-799.	16.7	19
29	First experimental feasibility study of VIPIC: a custom-made detector for X-ray speckle measurements. Journal of Synchrotron Radiation, 2016, 23, 404-409.	2.4	9
30	Submillisecond X-ray photon correlation spectroscopyÂfrom a pixel array detector with fastÂdual gating and no readout dead-time. Journal of Synchrotron Radiation, 2016, 23, 679-684.	2.4	25
31	Co-GISAXS technique for investigating surface growth dynamics. Physical Review B, 2015, 92, .	3.2	10
32	Charge-induced equilibrium dynamics and structure at the Ag(001)–electrolyte interface. Physical Chemistry Chemical Physics, 2015, 17, 16682-16687.	2.8	12
33	Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space. Nano Letters, 2015, 15, 3735-3742.	9.1	80
34	Dynamics of Cadmium Sulfide Nanoparticles within Polystyrene Melts. Macromolecules, 2014, 47, 6483-6490.	4.8	17
35	Real-time MPI-based software for processing of XPCS data. , 2014, , .		1
36	A 960 $\tilde{A}-$ 960 fast frame store CCD detector for x-ray photon correlation spectroscopy. , 2014, , .		1

#	Article	IF	Citations
37	Hidden motion made known – rotational X-ray tracking reveals spinning colloids. IUCrJ, 2014, 1, 153-154.	2.2	1
38	The Static and Dynamic Structure Factor of a Diblock Copolymer Melt via Small-Angle X-ray Scattering and X-ray Photon Correlation Spectroscopy. Macromolecules, 2013, 46, 8628-8637.	4.8	9
39	X-ray speckle visibility spectroscopy in the single-photon limit. Journal of Synchrotron Radiation, 2013, 20, 332-338.	2.4	27
40	Dynamics of the Au (001) surface in electrolytes: <i>In situ</i> coherent x-ray scattering. Physical Review B, 2012, 86, .	3.2	13
41	X-ray photon correlation spectroscopy during homogenous shear flow. Physical Review E, 2012, 85, 021402.	2.1	22
42	GridFTP based real-time data movement architecture for x-ray photon correlation spectroscopy at the Advanced Photon Source., 2012,,.		2
43	Collective pinning dynamics of charge-density waves in 1 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi></mml:math> -TaS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>20</td></mml:mrow<></mml:msub></mml:math>	3.2	20
44	Capillary Wave Dynamics of Thin Polymer Films over Submerged Nanostructures. Physical Review Letters, 2012, 109, 207801.	7.8	20
45	X-Ray Reflectivity and Diffuse Scattering Study of Effect of Ca2+ on Cushioned Lipid Bilayer. Biophysical Journal, 2012, 102, 382a.	0.5	0
46	Anomalous structural and dynamical phase transitions of soft colloidal binary mixtures. Soft Matter, 2012, 8, 10055.	2.7	9
47	The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source. Journal of Synchrotron Radiation, 2012, 19, 627-636.	2.4	114
48	First Observation of Dynamics in Lipid Multilayers using X-ray Photon Correlation Spectroscopy (XPCS). Biophysical Journal, 2011, 100, 629a.	0.5	0
49	Effects of Back Pressure on Condensed-Phase Properties Within Supercritical Ethylene Jets., 2011,,.		1
50	MPICorrelator: A parallel code for performing time correlations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 240-242.	1.6	6
51	Real-time compression of streaming X-ray photon correlation spectroscopy area-detector data. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 237-239.	1.6	6
52	Investigation of condensed supercritical ethylene jets using Small Angle X-ray Scattering (SAXS) technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 219-221.	1.6	6
53	A graphical user interface for real-time analysis of XPCS using HPC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 234-236.	1.6	14
54	Development of ultra-small-angle X-ray scattering–X-ray photon correlation spectroscopy. Journal of Applied Crystallography, 2011, 44, 200-212.	4.5	21

#	Article	IF	Citations
55	X-ray near-field speckle: implementation and critical analysis. Journal of Synchrotron Radiation, 2011, 18, 823-834.	2.4	6
56	Measurement of hard x-ray lens wavefront aberrations using phase retrieval. Applied Physics Letters, 2011, 98, 111108.	3.3	50
57	Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data. Review of Scientific Instruments, 2011, 82, 075109.	1.3	4
58	Substrate suppression of thermal roughness in stacked supported bilayers. Physical Review E, 2011, 84, 041914.	2.1	6
59	Depletion-Induced Structure and Dynamics in Bimodal Colloidal Suspensions. Physical Review Letters, 2011, 106, 188301.	7.8	26
60	Persistent oscillations of x-ray speckles: Pt (001) step flow. Applied Physics Letters, 2011, 99, 121910.	3.3	15
61	In Situ Coherent X-ray Scattering and Scanning Tunneling Microscopy Studies of Hexagonally Reconstructed Au(001) in Electrolytes. ECS Transactions, 2011, 35, 71-81.	0.5	4
62	Re-entrant behavior in dynamics of binary mixtures of soft hybrid nanocolloids and homopolymers. Journal of Chemical Physics, 2011, 135, 134901.	3.0	8
63	Kinoform optics applied to X-ray photon correlation spectroscopy. Journal of Synchrotron Radiation, 2010, 17, 314-320.	2.4	12
64	A bi-prism interferometer for hard X-ray photons. Journal of Synchrotron Radiation, 2010, 17, 451-455.	2.4	10
65	FPGA-based compression of streaming x-ray photon correlation spectroscopy data. , 2010, , .		4
66	Structure, function, and self-assembly of single network gyroid (<i>I</i> 4 ₁ 32) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11676-11681.	7.1	428
67	Coherent hard x-ray diffractive imaging of nonisolated objects confined by an aperture. Physical Review B, 2010, 81, .	3.2	5
68	Communication: Unusual dynamics of hybrid nanoparticles and their binary mixtures. Journal of Chemical Physics, 2010, 133, 151105.	3.0	10
69	Dynamic Signatures of Microphase Separation in a Block Copolymer Melt Determined by X-ray Photon Correlation Spectroscopy and Rheology. Macromolecules, 2010, 43, 1515-1523.	4.8	24
70	"Gel-like―Mechanical Reinforcement in Polymer Nanocomposite Melts. Macromolecules, 2010, 43, 1003-1010.	4.8	209
71	One-dimensional hard x-ray field retrieval using a moveable structure. Optics Express, 2010, 18, 18374.	3.4	21
72	Investigation of Droplet Nucleation Inside Supercritical Ethylene Jets Using Small Angle X-Ray Scattering (SAXS) Technique., 2010,,.		3

#	Article	IF	CITATIONS
73	Dynamic and Static Measurements of A Single and Double Phospholipid Bilayer System. Biophysical Journal, 2010, 98, 220a.	0.5	O
74	Temperature-dependent structural arrest of silica colloids in a water–lutidine binary mixture. Soft Matter, 2010, 6, 6160.	2.7	15
75	Surface X-Ray Speckles: Coherent Surface Diffraction from Au(001). Physical Review Letters, 2009, 103, 165501.	7.8	41
76	Diamond kinoform hard X-ray refractive lenses: design, nanofabrication and testing. Journal of Synchrotron Radiation, 2009, 16, 8-13.	2.4	40
77	Design and performance of an ultra-high-vacuum-compatible artificial channel-cut monochromator. Journal of Synchrotron Radiation, 2008, 15, 12-18.	2.4	16
78	Thickness Induced Structural Changes in Polystyrene Films. Physical Review Letters, 2008, 101, 115501.	7.8	39
79	How a Liquid Becomes a Glass Both on Cooling and on Heating. Physical Review Letters, 2008, 100, 045701.	7.8	62
80	Contrast and Stability Improvements for XPCS Measurements at Beamline 8-ID-I at the APS. AIP Conference Proceedings, 2007, , .	0.4	5
81	Initial Characterization and Design of an UHV-Compatible Artificial Channel-Cut Monochromator. AIP Conference Proceedings, 2007, , .	0.4	3
82	Developing a Dedicated GISAXS Beamline at the APS. AIP Conference Proceedings, 2007, , .	0.4	3
83	Precision mechanical design of an UHV-compatible artificial channel-cut x-ray monochromator. , 2007,		1
84	Adaptation of a Commercial Optical CMOS Image Sensor for Direct-Detection Fast X-ray Imaging. AIP Conference Proceedings, 2007, , .	0.4	1
85	Nanoparticle suspensions studied by x-ray photon correlation spectroscopy. Materials Research Society Symposia Proceedings, 2007, 1027, 1.	0.1	0
86	Effect of x-ray beamline optics on x-ray photon correlation spectroscopy experiments., 2007,,.		1
87	Structure and dynamics of thin polymer films using synchrotron X-ray scattering. Journal of Applied Crystallography, 2007, 40, s18-s22.	4.5	3
88	Windows for small-angle X-ray scattering cryostats. Journal of Synchrotron Radiation, 2007, 14, 527-531.	2.4	12
89	Direct measurement of antiferromagnetic domain fluctuations. Nature, 2007, 447, 68-71.	27.8	152
90	Orientational order parameter of the nematic liquid crystalline phase of F-actin. Physical Review E, 2006, 73, 061901.	2.1	19

#	Article	IF	Citations
91	Crossover from Stretched to Compressed Exponential Relaxations in a Polymer-Based Sponge Phase. Physical Review Letters, 2006, 97, 066102.	7.8	77
92	Condensed Exponential Correlation Functions in Multicomponent Polymer Blends Measured by X-ray Photon Correlation Spectroscopy. Macromolecules, 2006, 39, 8822-8831.	4.8	18
93	Windows for X-ray Cryostats. AIP Conference Proceedings, 2006, , .	0.4	0
94	Design and characterization of an UHV compatible artificial channel cut monochromator., 2006, 6317, 351.		0
95	Observation of a low-viscosity interface between immiscible polymer layers. Physical Review E, 2006, 74, 010602.	2.1	29
96	Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt. Physical Review Letters, 2006, 96, 257801.	7.8	23
97	Structure and Phase Behavior of Block Copolymer Melts near the Sphereâ^'Cylinder Boundary. Macromolecules, 2005, 38, 7090-7097.	4.8	20
98	Absence of Scaling for the Intermediate Scattering Function of a Hard-Sphere Suspension: Static and Dynamic X-Ray Scattering from Concentrated Polystyrene Latex Spheres. Physical Review Letters, 2000, 84, 785-788.	7.8	82
99	Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source. Journal of Synchrotron Radiation, 1999, 6, 1174-1184.	2.4	66
100	Small-Angle X-ray Scattering Using Coherent Undulator Radiation at the ESRF. Journal of Synchrotron Radiation, 1998, 5, 37-47.	2.4	102
101	Coherent X-Ray Study of Fluctuations during Domain Coarsening. Physical Review Letters, 1998, 81, 5832-5835.	7.8	102
102	Dynamics of Block Copolymer Micelles Revealed by X-Ray Intensity Fluctuation Spectroscopy. Physical Review Letters, 1997, 78, 1275-1278.	7.8	123
103	<title>Production and characterization of x-ray speckle at Sector 8 of the advanced photon source</title> ., 1997, 3154, 27.		1
104	Faceting and reconstruction of stepped Au(111). Physical Review B, 1995, 52, 12329-12344.	3.2	34
105	Au(111) and Pt(111) surface phase behavior. Surface Science, 1993, 287-288, 321-324.	1.9	9
106	Reconstruction of the (111) and (001) surfaces of Au and Pt: thermal behavior. Surface Science, 1993, 283, 260-276.	1.9	40
107	Phase behavior of Au and Pt surfaces. Surface Science, 1993, 287-288, 842-846.	1.9	4
108	X-ray-scattering determination of the Cu(110)-(2×3)N structure. Physical Review B, 1993, 48, 9013-9020.	3.2	37

ALEC R SANDY

#	Article	lF	CITATIONS
109	Reconstruction of the Pt(111) surface: X-ray-scattering measurements. Physical Review B, 1993, 48, 18119-18139.	3.2	57
110	Reconstruction of the Pt(111) surface. Physical Review Letters, 1992, 68, 2192-2195.	7.8	129
111	Structure and phases of the Au(111) surface: X-ray-scattering measurements. Physical Review B, 1991, 43, 4667-4687.	3.2	246
112	Phase behavior of the Au(111) surface: Discommensurations and kinks. Physical Review Letters, 1990, 65, 3313-3316.	7.8	138