
Hongjian Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/208212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications, 2016, 7, 10523.	5.8	309
2	HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2853-2858.	3.3	303
3	White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Experimental Neurology, 2015, 272, 109-119.	2.0	150
4	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	3.3	119
5	n-3 PUFA supplementation benefits microglial responses to myelin pathology. Scientific Reports, 2014, 4, 7458.	1.6	117
6	Omega-3 Polyunsaturated Fatty Acid Supplementation Improves Neurologic Recovery and Attenuates White Matter Injury after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1474-1484.	2.4	94
7	Scriptaid, a Novel Histone Deacetylase Inhibitor, Protects Against Traumatic Brain Injury via Modulation of PTEN and AKT Pathway. Neurotherapeutics, 2013, 10, 124-142.	2.1	88
8	Endothelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery. Circulation Research, 2020, 126, 1040-1057.	2.0	75
9	A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Translational Stroke Research, 2016, 7, 548-561.	2.3	70
10	Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1224-1234.	1.2	56
11	Transforming Growth Factor Beta-Activated Kinase 1–Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke, 2020, 51, 975-985.	1.0	55
12	Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9230-E9238.	3.3	54
13	Inhibition of Na + -K + -2Cl â^ cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochemistry International, 2017, 111, 23-31.	1.9	47
14	Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Scientific Reports, 2015, 5, 9621.	1.6	45
15	APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3558-67.	3.3	42
16	Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1394-1409.	2.4	42
17	Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9115-9124.	3.3	37
18	Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARÎ3. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 511-529.	2.4	37

Hongjian Pu

#	Article	IF	CITATIONS
19	Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Translational Stroke Research, 2016, 7, 521-534.	2.3	34
20	Severity-Dependent Long-Term Spatial Learning-Memory Impairment in a Mouse Model of Traumatic Brain Injury. Translational Stroke Research, 2016, 7, 512-520.	2.3	34
21	Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiology of Disease, 2019, 126, 62-75.	2.1	31
22	Repetitive and Prolonged Omega-3 Fatty Acid Treatment after Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery. Cell Transplantation, 2017, 26, 555-569.	1.2	30
23	Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2870-2886.	2.4	21
24	Inhibition of TGFβ-activated kinase 1 promotes inflammation-resolving microglial/macrophage responses and recovery after stroke in ovariectomized female mice. Neurobiology of Disease, 2021, 151, 105257.	2.1	14
25	A comparison of different models with motor dysfunction after traumatic brain injury in adult rats. Journal of Integrative Neuroscience, 2014, 13, 579-593.	0.8	3