Adam M Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081448/publications.pdf Version: 2024-02-01

ADAM M RIIDE

#	Article	IF	CITATIONS
1	Optical-Beam-Induced Current in InAs/InP Nanowires for Hot-Carrier Photovoltaics. ACS Applied Energy Materials, 2022, 5, 7728-7734.	2.5	3
2	Heat Driven Transport in Serial Double Quantum Dot Devices. Nano Letters, 2021, 21, 988-994.	4.5	18
3	Gate control, g factors, and spin-orbit energy of p -type GaSb nanowire quantum dot devices. Physical Review B, 2021, 103, .	1.1	1
4	Characterization of electrostatically defined bottom-heated InAs nanowire quantum dot systems. New Journal of Physics, 2021, 23, 125007.	1.2	4
5	Hot-carrier separation in heterostructure nanowires observed by electron-beam induced current. Nanotechnology, 2020, 31, 394004.	1.3	10
6	Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices. Nano Letters, 2020, 20, 4064-4072.	4.5	21
7	Selective tuning of spin-orbital Kondo contributions in parallel-coupled quantum dots. Physical Review B, 2020, 101, .	1.1	2
8	Side-gated, enhancement mode, InAs nanowire double quantum dot devices—toward controlling transverse electric fields in spin-transport measurements. Nanotechnology, 2019, 30, 144002.	1.3	6
9	Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors. Nanotechnology, 2019, 30, 064001.	1.3	12
10	Thermoelectric Power Factor Limit of a 1D Nanowire. Physical Review Letters, 2018, 120, 177703.	2.9	30
11	Thermoelectric Characterization of the Kondo Resonance in Nanowire Quantum Dots. Physical Review Letters, 2018, 121, 206801.	2.9	39
12	Spectroscopy and level detuning of few-electron spin states in parallel InAs quantum dots. Physical Review B, 2018, 98, .	1.1	6
13	A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Nature Nanotechnology, 2018, 13, 920-924.	15.6	201
14	Bipolar Photothermoelectric Effect Across Energy Filters in Single Nanowires. Nano Letters, 2017, 17, 4055-4060.	4.5	32
15	Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry. Nano Letters, 2017, 17, 827-833.	4.5	26
16	Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage. Nanotechnology, 2017, 28, 434001.	1.3	17
17	Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 34-38.	1.3	17
18	Using Polymer Electrolyte Gates to Setâ€andâ€Freeze Threshold Voltage and Local Potential in Nanowireâ€based Devices and Thermoelectrics. Advanced Functional Materials, 2015, 25, 255-262.	7.8	14

Adam M Burke

#	Article	IF	CITATIONS
19	InAs Nanowire Transistors with Multiple, Independent Wrap-Gate Segments. Nano Letters, 2015, 15, 2836-2843.	4.5	36
20	Nanoscale polymer electrolytes: Fabrication and applications using nanowire transistors. , 2014, , .		0
21	Determining the stability and activation energy of Si acceptors in AlGaAs using quantum interference in an open hole quantum dot. Physical Review B, 2014, 89, .	1.1	1
22	Electron-Beam Patterning of Polymer Electrolyte Films To Make Multiple Nanoscale Gates for Nanowire Transistors. Nano Letters, 2014, 14, 94-100.	4.5	27
23	Open quantum dots: Physics of the nonâ€Hermitian Hamiltonian. Fortschritte Der Physik, 2013, 61, 291-304.	1.5	8
24	The effect of (NH ₄) ₂ S _{<i>x</i>} passivation on the (311)A GaAs surface and its use in AlGaAs/GaAs heterostructure devices. Journal of Physics Condensed Matter, 2013, 25, 325304.	0.7	8
25	Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi - Rapid Research Letters, 2013, 7, 911-914.	1.2	15
26	Direct Imaging of Electron States in Open Quantum Dots. Physical Review Letters, 2012, 108, 136804.	2.9	34
27	Origin of gate hysteresis in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -type Si-doped AlGaAs/GaAs heterostructures. Physical Review B, 2012, 86, .	1.1	12
28	Open quantum dots: II. Probing the classical to quantum transition. Journal of Physics Condensed Matter, 2012, 24, 343202.	0.7	11
29	Extreme Sensitivity of the Spin-Splitting and 0.7 Anomaly to Confining Potential in One-Dimensional Nanoelectronic Devices. Nano Letters, 2012, 12, 4495-4502.	4.5	22
30	Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots. Physical Review Letters, 2012, 108, 196807.	2.9	29
31	Resistively Detected Nuclear Magnetic Resonance in n- and p-Type GaAs Quantum Point Contacts. Nano Letters, 2011, 11, 3147-3150.	4.5	27
32	Open quantum dots—probing the quantum to classical transition. Semiconductor Science and Technology, 2011, 26, 043001.	1.0	44
33	Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism. Physical Review Letters, 2010, 104, 176801.	2.9	44
34	Imaging scarred states in quantum dots. Journal of Physics Condensed Matter, 2009, 21, 212201.	0.7	8
35	Observation of open quantum dot via low temperature scanning gate microscopy. Journal of Physics: Conference Series, 2009, 150, 022002.	0.3	0
36	Imaging classical and quantum structures in an open quantum dot using scanning gate microscopy. Journal of Vacuum Science & Technology B, 2008, 26, 1488.	1.3	3