Marie Jose Goumans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081146/publications.pdf

Version: 2024-02-01

300 papers

18,922 citations

70 h-index 128 g-index

306 all docs

306 docs citations

306 times ranked 22465 citing authors

#	Article	IF	CITATIONS
1	Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF- \hat{l}^2 signalling. Angiogenesis, 2022, 25, 99-112.	7.2	8
2	Interplay of sex hormones and long-term right ventricular adaptation in a Dutch PAH-cohort. Journal of Heart and Lung Transplantation, 2022, 41, 445-457.	0.6	12
3	Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nature Biomedical Engineering, 2022, 6, 389-402.	22.5	16
4	Right Ventricular and Right Atrial Function Are Less Compromised in Pulmonary Hypertension Secondary to Heart Failure With Preserved Ejection Fraction: A Comparison With Pulmonary Arterial Hypertension With Similar Pressure Overload. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008726.	3.9	12
5	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	2.4	16
6	R-SMAD in control of the R-smooth muscle cell. , 2022, 1, 289-290.		0
7	Increased Bone Morphogenetic Protein 10 Activity Is Associated with Increased Right Atrial Wall Stress and Disease Severity in Pulmonary Hypertension. , 2022, , .		O
8	Right Atrial Adaptation to Pressure-Overload in Pulmonary Arterial Hypertension. , 2022, , .		0
9	BYL-719 administration prevents heterotopic ossification in FOP mice irrespective of ACVR1/ALK2 kinase activity. Bone Reports, 2022, 16, 101282.	0.4	O
10	Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGF \hat{l}^2 signalling. Cardiovascular Research, 2021, 117, 201-211.	3.8	13
11	Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 331-343.	2.9	12
12	Altered TGF \hat{l}^2 /SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells, 2021, 10, 84.	4.1	16
13	Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence?. Biomedicines, 2021, 9, 57.	3.2	59
14	Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis. Frontiers in Physiology, 2021, 12, 557514.	2.8	3
15	Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines, 2021, 9, 213.	3.2	8
16	BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. International Journal of Molecular Sciences, 2021, 22, 2010.	4.1	2
17	The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells, 2021, 10, 737.	4.1	13
18	The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Development, New Opportunities through Emerging Technologies. Journal of Cardiovascular Development and Disease, 2021, 8, 47.	1.6	2

#	Article	IF	CITATIONS
19	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	11.1	31
20	Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 4804.	4.1	10
21	Cripto favours chondrocyte hypertrophy via TGF-beta SMAD1/5 signaling in experimental osteoarthritis. Bone Reports, 2021, 14, 101043.	0.4	0
22	The battle of new biomarkers for right heart failure in pulmonary hypertension: is the queen of hearts NT-proBNP defeated at last?. European Respiratory Journal, 2021, 57, 2004277.	6.7	2
23	New calcification model for intact murine aortic valves. Journal of Molecular and Cellular Cardiology, 2021, 156, 95-104.	1.9	4
24	Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells. Cells, 2021, 10, 2064.	4.1	3
25	Cripto favors chondrocyte hypertrophy via <scp>TGF</scp> â€Î² <scp>SMAD1</scp> /5 signaling during development of osteoarthritis. Journal of Pathology, 2021, 255, 330-342.	4.5	11
26	Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Science Translational Medicine, 2021, 13, eabf2750.	12.4	16
27	Deficient Myocardial Organization and Pathological Fibrosis in Fetal Aortic Stenosis—Association of Prenatal Ultrasound with Postmortem Histology. Journal of Cardiovascular Development and Disease, 2021, 8, 121.	1.6	3
28	Derivation and characterisation of endothelial cells from patients with chronic thromboembolic pulmonary hypertension. Scientific Reports, 2021, 11, 18797.	3.3	9
29	Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development (Cambridge), 2021, 148, .	2.5	25
30	The people behind the papers – Dennis de Bakker, Mara Bouwman and Jeroen Bakkers. Development (Cambridge), 2021, 148, .	2.5	0
31	Cardiomyocytes Cellular Phenotypes After Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2021, 8, 750510.	2.4	35
32	Oncofetal Protein CRIPTO Is Involved in Wound Healing and Fibrogenesis in the Regenerating Liver and Is Associated with the Initial Stages of Cardiac Fibrosis. Cells, 2021, 10, 3325.	4.1	2
33	Interfering in the ALK1 Pathway Results in Macrophage-Driven Outward Remodeling of Murine Vein Grafts. Frontiers in Cardiovascular Medicine, 2021, 8, 784980.	2.4	7
34	Development of a 3-Dimensional Model to Study Right Heart Dysfunction in Pulmonary Arterial Hypertension: First Observations. Cells, 2021, 10, 3595.	4.1	1
35	Activin A and ALK4 Identified as Novel Regulators of Epithelial to Mesenchymal Transition (EMT) in Human Epicardial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 765007.	3.7	0
36	Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease. Cardiovascular Research, 2020, 116, 931-943.	3.8	13

#	Article	IF	CITATIONS
37	Reply to Ning et al.: More Insights into the Association between RVX-208 and Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 389-391.	5.6	O
38	LIM-only protein FHL2 attenuates inflammation in vascular smooth muscle cells through inhibition of the NFÎB pathway. Vascular Pharmacology, 2020, 125-126, 106634.	2.1	7
39	Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Science Translational Medicine, 2020, 12, .	12.4	74
40	Anti-Proliferative Therapy with 6-Mercaptopurine Improves Hemodynamics and BMPR2 Expression in Pulmonary Arterial Hypertension. , 2020, , .		0
41	Exacerbated inflammatory signaling underlies aberrant response to BMP9 in pulmonary arterial hypertension lung endothelial cells. Angiogenesis, 2020, 23, 699-714.	7.2	22
42	Disturbed NO signalling gives rise to congenital bicuspid aortic valve and aortopathy. DMM Disease Models and Mechanisms, 2020, 13 , .	2.4	10
43	TGF-Î ² -Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Frontiers in Cell and Developmental Biology, 2020, 8, 260.	3.7	133
44	MnTBAP Reverses Pulmonary Vascular Remodeling and Improves Cardiac Function in Experimentally Induced Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2020, 21, 4130.	4.1	2
45	Extracellular Matrix Analysis of Human Renal Arteries in Both Quiescent and Active Vascular State. International Journal of Molecular Sciences, 2020, 21, 3905.	4.1	5
46	Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone, 2020, 138, 115472.	2.9	65
47	The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells, 2020, 9, 1422.	4.1	23
48	Epicardial TGF \hat{l}^2 and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart?. Biomolecules, 2020, 10, 404.	4.0	15
49	The human amniotic fluid stem cell secretome exerts cardio-active paracrine potential for myocardial repair and regeneration. Cytotherapy, 2020, 22, S171.	0.7	0
50	A combined CaMKII inhibition and mineralocorticoid receptor antagonism via eplerenone inhibits functional deterioration in chronic pressure overloaded mice. Journal of Cellular and Molecular Medicine, 2020, 24, 8417-8429.	3.6	3
51	Reply to Chen et al.: BET Signaling: A Novel Therapeutic Target for Pulmonary Hypertension?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1313-1314.	5.6	0
52	Endoglin: Beyond the Endothelium. Biomolecules, 2020, 10, 289.	4.0	62
53	LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica, 2020, 105, 1677-1685.	3.5	4
54	Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles. Diabetes, 2020, 69, 603-613.	0.6	9

#	Article	lF	CITATIONS
55	Blood biomarkers in patients with bicuspid aortic valve disease. Journal of Cardiology, 2020, 76, 287-294.	1.9	3
56	Human epicardium-derived cells reinforce cardiac sympathetic innervation. Journal of Molecular and Cellular Cardiology, 2020, 143, 26-37.	1.9	9
57	The Effects of Mercaptopurine on Pulmonary Vascular Resistance and BMPR2 Expression in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 296-299.	5.6	10
58	Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1. Frontiers in Physiology, 2020, 11, 588679.	2.8	5
59	Sex differences in the relation between sex hormones and right ventricular function in pulmonary arterial hypertension. , 2020, , .		0
60	HDAC inhibitor quisinostat reduces pulmonary vascular remodeling in experimentally induced pulmonary arterial hypertension. , 2020, , .		0
61	Abstract 15161: Increased Right Atrial Stiffness in Patients With Heart Failure With Preserved Ejection Fraction and Pulmonary Hypertension. Circulation, 2020, 142, .	1.6	0
62	Inhibition of BMP9 and BMP10 signalling by the ALK1-Fc Ligand Trap enhances systemic inflammation and increases vein graft atherosclerosis. European Heart Journal, 2020, 41, .	2.2	0
63	A small molecule screen identifies novel inducers of EMT that may increase epicardium-driven repair of the heart. European Heart Journal, 2020, 41, .	2.2	0
64	Single-cell RNA sequencing of human fetal epicardium reveals novel markers and regulators of EMT. European Heart Journal, 2020, 41, .	2.2	0
65	Selective inhibition of Histone deacetylases reverses vascular remodelling and improves right ventricle function in pulmonary hypertension. European Heart Journal, 2020, 41, .	2.2	0
66	New ex vivo calcification model for intact murine aortic valves. European Heart Journal, 2020, 41, .	2.2	0
67	Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. Journal of Internal Medicine, 2019, 285, 59-74.	6.0	42
68	Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovascular Research, 2019, 115, 432-439.	3.8	38
69	Supporting data on inÂvitro cardioprotective and proliferative paracrine effects by the human amniotic fluid stem cell secretome. Data in Brief, 2019, 25, 104324.	1.0	14
70	Reply to Piquereau and Perros and to Pullamsetti and de Jesus Perez. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1190-1191.	5.6	1
71	In vivo and in vitro Approaches Reveal Novel Insight Into the Ability of Epicardium-Derived Cells to Create Their Own Extracellular Environment. Frontiers in Cardiovascular Medicine, 2019, 6, 81.	2.4	7
72	Autophagy contributes to BMP type 2 receptor degradation and Adevelopment of pulmonary arterial hypertension. Journal of Pathology, 2019, 249, 356-367.	4.5	30

#	Article	IF	Citations
73	Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. European Respiratory Journal, 2019, 54, 1802400.	6.7	25
74	Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. International Journal of Molecular Sciences, 2019, 20, 3251.	4.1	6
75	A proteome comparison between human fetal and mature renal extracellular matrix identifies EMILIN1 as a regulator of renal epithelial cell adhesion. Matrix Biology Plus, 2019, 4, 100011.	3.5	13
76	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	7.6	61
77	Effects of 6-mercaptopurine in pressure overload induced right heart failure. PLoS ONE, 2019, 14, e0225122.	2.5	8
78	Generation of Fibrodysplasia ossificans progressiva and control integration free iPSC lines from periodontal ligament fibroblasts. Stem Cell Research, 2019, 41, 101639.	0.7	7
79	Development of Macrocycle Kinase Inhibitors for ALK2 Using Fibrodysplasia Ossificans Progressivaâ€Derived Endothelial Cells. JBMR Plus, 2019, 3, e10230.	2.7	26
80	Pathogenic effect of a <i>TGFBR1</i> mutation in a family with Loeys–Dietz syndrome. Molecular Genetics & Cenomic Medicine, 2019, 7, e00943.	1.2	3
81	Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. Molecules, 2019, 24, 181.	3.8	7
82	Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 910-920.	5.6	100
83	The role of hemodynamics in bicuspid aortopathy: a histopathologic study. Cardiovascular Pathology, 2019, 41, 29-37.	1.6	23
84	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	1.7	57
85	Human iPSC-Derived Retinas Recapitulate the Fetal CRB1 CRB2 Complex Formation and Demonstrate that Photoreceptors and Mýller Glia Are Targets of AAV5. Stem Cell Reports, 2019, 12, 906-919.	4.8	75
86	Identification of atrial fibrillation associated genes and functional non-coding variants. Nature Communications, 2019, 10, 4755.	12.8	64
87	Inflammation induces endothelialâ€toâ€mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. Journal of Pathology, 2019, 247, 333-346.	4.5	123
88	Immunofluorescent Visualization of BMP Signaling Activation on Paraffin-Embedded Tissue Sections. Methods in Molecular Biology, 2019, 1891, 191-200.	0.9	2
89	Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. Journal of Cardiovascular Translational Research, 2019, 12, 5-17.	2.4	53
90	Bone Morphogenetic Protein 9 Is a Mechanistic Biomarker of Portopulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 891-902.	5.6	69

#	Article	IF	Citations
91	Linkage Analysis of Transvalvular Flow Patterns, Histopathology, and Target Gene Expression in Aortic Valve Disease. , 2019, 67, .		O
92	The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascular Pharmacology, 2018, 106, 1-8.	2.1	77
93	Endothelial dysfunction in pulmonary arterial hypertension: loss of cilia length regulation upon cytokine stimulation. Pulmonary Circulation, 2018, 8, 1-9.	1.7	27
94	MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload–Induced Heart Failure. Hypertension, 2018, 71, 280-288.	2.7	128
95	Structural and cellular mechanisms of peptidyl-prolyl isomerase Pin1-mediated enhancement of Tissue Factor gene expression, protein half-life, and pro-coagulant activity. Haematologica, 2018, 103, 1073-1082.	3.5	13
96	TGF-Î ² Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022210.	5 . 5	238
97	Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a031989.	5.5	118
98	TGFβ pathway deregulation and abnormal phosphoâ€SMAD2/3 staining in hereditary cerebral hemorrhage with amyloidosisâ€Dutch type. Brain Pathology, 2018, 28, 495-506.	4.1	15
99	The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacological Research, 2018, 127, 129-140.	7.1	89
100	Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2018, 137, 910-924.	1.6	83
101	Nos3 mutation leads to abnormal neural crest cell and second heart field lineage patterning in bicuspid aortic valve formation. DMM Disease Models and Mechanisms, $2018,11,.$	2.4	37
102	Development of a patient-specific 3-Dimensional cell model to study right heart failure. Journal of Molecular and Cellular Cardiology, 2018, 120, 48.	1.9	0
103	Pulmonary Arterial Hypertension and Hereditary Haemorrhagic Telangiectasia. International Journal of Molecular Sciences, 2018, 19, 3203.	4.1	32
104	TGF-Î ² and BMPR2 Signaling in PAH: Two Black Sheep in One Family. International Journal of Molecular Sciences, 2018, 19, 2585.	4.1	78
105	A local uPAR-plasmin-TGF \hat{I}^21 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants. PLoS Computational Biology, 2018, 14, e1006239.	3.2	3
106	The Isolation and Culture of Primary Epicardial Cells Derived from Human Adult and Fetal Heart Specimens. Journal of Visualized Experiments, 2018, , .	0.3	15
107	Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion and Glucose Uptake in Muscle through Adipomuscular Microvascular Anastomoses. Diabetes, 2018, 67, .	0.6	0
108	Pharmacological activation of Nur77 enhances BMP signalling and inhibits vascular remodelling in pulmonary arterial hypertension. , 2018 , , .		0

#	Article	IF	CITATIONS
109	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
110	Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2061-2065.	3.3	268
111	BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017, 66, 939-954.	12.1	107
112	The Microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 10-12.	2.4	5
113	Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering, 2017, 1, .	22.5	86
114	Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells. MRS Communications, 2017, 7, 496-501.	1.8	6
115	Cardiac Progenitor-Cell Derived Exosomes as Cell-Free Therapeutic for Cardiac Repair. Advances in Experimental Medicine and Biology, 2017, 998, 207-219.	1.6	20
116	Preeclampsia and coronary plaque erosion: Manifestations of endothelial dysfunction resulting in cardiovascular events in women. European Journal of Pharmacology, 2017, 816, 129-137.	3.5	29
117	Glycosylated Cell Surface Markers for the Isolation of Human Cardiac Progenitors. Stem Cells and Development, 2017, 26, 1552-1565.	2.1	3
118	Mimicking Cardiac Fibrosis in a Dish: Fibroblast Density Rather than Collagen Density Weakens Cardiomyocyte Function. Journal of Cardiovascular Translational Research, 2017, 10, 116-127.	2.4	38
119	TGF \hat{l}^21 -induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity. Arthritis Research and Therapy, 2017, 19, 112.	3.5	49
120	Phenotypic Screen for Cardiac Regeneration Identifies Molecules with Differential Activity in Human Epicardium-Derived Cells versus Cardiac Fibroblasts. ACS Chemical Biology, 2017, 12, 132-141.	3.4	17
121	Leukocyte-Associated Immunoglobulin-like Receptor-1 is regulated in human myocardial infarction but its absence does not affect infarct size in mice. Scientific Reports, 2017, 7, 18039.	3.3	8
122	Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Frontiers in Physiology, 2017, 8, 486.	2.8	31
123	Thoracic Aortic Aneurysm Development in Patients with Bicuspid Aortic Valve: What Is the Role of Endothelial Cells?. Frontiers in Physiology, 2017, 8, 938.	2.8	30
124	ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Frontiers in Cell and Developmental Biology, 2017, 5, 104.	3.7	3
125	Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction. PLoS ONE, 2017, 12, e0189805.	2.5	6
126	The effects of hemodynamics on the inner layers of the aortic wall in patients with a bicuspid aortic valve. Integrative Molecular Medicine, 2017, 4, .	0.3	13

#	Article	IF	Citations
127	Effects of ALK1Fc treatment on prostate cancer cells interacting with bone and bone cells in bone metastasis models Journal of Clinical Oncology, 2017, 35, e16576-e16576.	1.6	O
128	Bone morphogenetic protein 9 protects against neonatal hyperoxia-induced impairment of lung development, inflammation and fibrosis. , 2017, , .		0
129	The effect of 6-mercaptopurine treatment on experimentally induced pulmonary arterial hypertension. , 2017, , .		0
130	Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. Journal of Cardiovascular Development and Disease, 2016, 3, 28.	1.6	33
131	Comparative transcriptomic analysis identifies genes differentially expressed in human epicardial progenitors and hiPSC-derived cardiac progenitors. Physiological Genomics, 2016, 48, 771-784.	2.3	2
132	Plaque neovessel maturation enhancement by VEGFR2 blockade reduces intraplaque haemorrhage. Atherosclerosis, 2016, 244, e6.	0.8	0
133	Bone Morphogenetic Protein Receptor Type 2 Mutation in Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1747-1760.	1.6	75
134	Response by van der Bruggen et al to Letter Regarding Article, "Bone Morphogenetic Protein Receptor Type 2 Mutation in Pulmonary Arterial Hypertension: A View on the Right Ventricle― Circulation, 2016, 134, e117-8.	1.6	0
135	Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integrative Biology (United Kingdom), 2016, 8, 991-1001.	1.3	21
136	Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN. Advanced Healthcare Materials, 2016, 5, 2555-2565.	7.6	158
137	Human fetal and adult epicardial-derived cells: a novel model to study their activation. Stem Cell Research and Therapy, 2016, 7, 174.	5.5	45
138	Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia, 2016, 5, 7.	1.8	66
139	Inhibition of TGF \hat{I}^2 type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Archives of Toxicology, 2016, 90, 347-357.	4.2	33
140	Expression of $TGF\hat{1}^2$ -family signalling components in ageing cartilage: age-related loss of $TGF\hat{1}^2$ and BMP receptors. Osteoarthritis and Cartilage, 2016, 24, 1235-1245.	1.3	38
141	Cardiac Stem Cell Treatment in Myocardial Infarction. Circulation Research, 2016, 118, 1223-1232.	4.5	138
142	The roadmap of WT1 protein expression in the human fetal heart. Journal of Molecular and Cellular Cardiology, 2016, 90, 139-145.	1.9	22
143	Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomaterialia, 2016, 29, 161-169.	8.3	47
144	Environmental Influences on Endothelial to Mesenchymal Transition in Developing Implanted Cardiovascular Tissue-Engineered Grafts. Tissue Engineering - Part B: Reviews, 2016, 22, 58-67.	4.8	16

#	Article	IF	Citations
145	Activin Receptor-like Kinase 1 Ligand Trap Reduces Microvascular Density and Improves Chemotherapy Efficiency to Various Solid Tumors. Clinical Cancer Research, 2016, 22, 96-106.	7.0	47
146	Interrogating TGF- \hat{l}^2 Function and Regulation in Endothelial Cells. Methods in Molecular Biology, 2016, 1344, 193-203.	0.9	11
147	Targeting BMP signalling in cardiovascular disease and anaemia. Nature Reviews Cardiology, 2016, 13, 106-120.	13.7	193
148	Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?. Heart and Vessels, 2016, 31, 795-806.	1.2	40
149	Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves. PLoS ONE, 2016, 11, e0149020.	2.5	48
150	The Derivation of Primary Human Epicardiumâ€Derived Cells. Current Protocols in Stem Cell Biology, 2015, 35, 2C.5.1-2C.5.12.	3.0	11
151	Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System. Journal of Visualized Experiments, 2015, , e52750.	0.3	5
152	Regional differences in WT-1 and Tcf21 expression during ventricular development: implications for myocardial compaction. PLoS ONE, 2015, 10, e0136025.	2.5	22
153	Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial. PLoS ONE, 2015, 10, e0143953.	2.5	17
154	The epicardium as modulator of the cardiac autonomic response during early development. Journal of Molecular and Cellular Cardiology, 2015, 89, 251-259.	1.9	13
155	Functional maturation of human pluripotent stem cell derived cardiomyocytes inÂvitro – Correlation between contraction force andÂelectrophysiology. Biomaterials, 2015, 51, 138-150.	11.4	176
156	The high affinity ALK1-ligand BMP9 induces a hypertrophy-like state in chondrocytes that is antagonized by TGF \hat{I}^21 . Osteoarthritis and Cartilage, 2015, 23, 985-995.	1.3	26
157	Mononuclear cells and vascular repair in HHT. Frontiers in Genetics, 2015, 6, 114.	2.3	28
158	Mutations in a TGF-Î ² Ligand, TGFB3, CauseÂSyndromic Aortic Aneurysms andÂDissections. Journal of the American College of Cardiology, 2015, 65, 1324-1336.	2.8	238
159	SLUG Is Expressed in Endothelial Cells Lacking Primary Cilia to Promote Cellular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 616-627.	2.4	44
160	mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs. Journal of Molecular and Cellular Cardiology, 2015, 82, 228-237.	1.9	7
161	Cardiac endothelial cells express Wilms' tumor-1. Journal of Molecular and Cellular Cardiology, 2015, 81, 127-135.	1.9	90
162	Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. Journal of Molecular and Cellular Cardiology, 2015, 87, 79-91.	1.9	24

#	Article	IF	Citations
163	Abstract 1370: Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. , 2015, , .		1
164	Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling. EXCLI Journal, 2015, 14, 832-50.	0.7	8
165	Balancing TGFbeta/BMP in pulmonary arterial hypertension. , 2015, , .		0
166	Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF- \hat{l}^2 signalling. Nature Communications, 2014, 5, 3388.	12.8	156
167	Normal and abnormal development of the aortic wall and valve: correlation with clinical entities. Netherlands Heart Journal, 2014, 22, 363-369.	0.8	24
168	Novel Ex Vivo Culture Method for the Study of Dupuytren's Disease: Effects of $TGF\hat{1}^2$ Type 1 Receptor Modulation by Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2014, 3, e142.	5.1	24
169	Bicuspid aortic valve: phosphorylation of c-Kit and downstream targets are prognostic for future aortopathy. European Journal of Cardio-thoracic Surgery, 2014, 46, 831-839.	1.4	35
170	A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Frontiers in Physiology, 2014, 5, 210.	2.8	23
171	Hippo Pathway Effectors Control Cardiac Progenitor Cell Fate by Acting as Dynamic Sensors of Substrate Mechanics and Nanostructure. ACS Nano, 2014, 8, 2033-2047.	14.6	127
172	The microRNA-15 family inhibits the TGFÎ ² -pathway in the heart. Cardiovascular Research, 2014, 104, 61-71.	3.8	147
173	A straightforward guide to the basic science behind cardiovascular cell-based therapies. Heart, 2014, 100, 1153-1157.	2.9	18
174	Ascending aorta dilation in association with bicuspid aortic valve: AÂmaturation defect of the aortic wall. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1583-1590.	0.8	67
175	P348Impaired macrophage polarization in endoglin haplo-insufficiency leading to defective tissue repair is recovered by counter balance the TGFbeta pathway. Cardiovascular Research, 2014, 103, S63.4-S63.	3.8	0
176	Vegfr2 blockade in murine vein graft results in reduced intraplaque hemorrhage and stable atherosclerotic lesions. Atherosclerosis, 2014, 235, e161-e162.	0.8	1
177	PS210. Inhibition of VEGFR2 Reduces Angiogenic Microvessel Leakiness in Murine Vein Graft Atherosclerotic Lesions and Increased Plaque Stability. Journal of Vascular Surgery, 2014, 59, 83S-84S.	1.1	0
178	ENDOGLIN Is Dispensable for Vasculogenesis, but Required for Vascular Endothelial Growth Factor-Induced Angiogenesis. PLoS ONE, 2014, 9, e86273.	2.5	59
179	Abstract 642: Vascular Endothelial Growth Factor Receptor 2 Blockade in Murine Vein Graft Ameliorates Lesion Growth and Enhances Plaque Stability by Reducing Intraplaque Hemorrhage. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	1
180	TGF- \hat{l}^2 and Cardiovascular Disorders. , 2013, , 297-322.		1

#	Article	IF	Citations
181	Extraembryonic Endoderm cells as a model of endoderm development. Development Growth and Differentiation, 2013, 55, 301-308.	1.5	15
182	microRNA-1 enhances the angiogenic differentiation of human cardiomyocyte progenitor cells. Journal of Molecular Medicine, 2013, 91, 1001-1012.	3.9	33
183	Quaking, an RNA-Binding Protein, Is a Critical Regulator of Vascular Smooth Muscle Cell Phenotype. Circulation Research, 2013, 113, 1065-1075.	4.5	86
184	Bicuspid aortic valve and aneurysm formation: immaturity of the aortic wall. European Heart Journal, 2013, 34, P5680-P5680.	2.2	0
185	Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. Journal of Experimental Medicine, 2013, 210, 563-579.	8.5	110
186	CD26 Inhibition Enhances Perfusion Recovery in ApoE-/-Mice. Current Vascular Pharmacology, 2013, 11, 21-28.	1.7	4
187	Remodeling of the myocardium in early trabeculation and cardiac valve formation; a role for TGFÎ ² 2. International Journal of Developmental Biology, 2013, 57, 853-863.	0.6	12
188	Bone Marrow Alterations and Lower Endothelial Progenitor Cell Numbers in Critical Limb Ischemia Patients. PLoS ONE, 2013, 8, e55592.	2.5	64
189	Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. Journal of Cell Biology, 2013, 200, i10-i10.	5. 2	0
190	CD26 inhibition enhances perfusion recovery in ApoE-/-mice. Current Vascular Pharmacology, 2013, 11, 21-8.	1.7	3
191	Isolation and Differentiation of Human Cardiomyocyte Progenitor Cells into Cardiomyocytes. Methods in Molecular Biology, 2012, 879, 339-349.	0.9	10
192	Cardiac Regeneration: Stem Cells and Beyond. Current Medicinal Chemistry, 2012, 19, 5993-6002.	2.4	5
193	MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovascular Research, 2012, 93, 655-665.	3.8	132
194	Anti-human Activin Receptor-like Kinase 1 (ALK1) Antibody Attenuates Bone Morphogenetic Protein 9 (BMP9)-induced ALK1 Signaling and Interferes with Endothelial Cell Sprouting. Journal of Biological Chemistry, 2012, 287, 18551-18561.	3.4	90
195	Oral abstract presentations & Young Investigators Competition. Cardiovascular Research, 2012, 93, S46-S51.	3.8	1
196	TGF-Î ² Signaling in Endothelial-to-Mesenchymal Transition: The Role of Shear Stress and Primary CiliaA Presentation from the Keystone Symposium on Epithelial Plasticity and Epithelial to Mesenchymal Transition, Vancouver, Canada, 21 to 26 January 2011 Science Signaling, 2012, 5, pt2.	3.6	69
197	Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in vitro differentiation. Journal of Molecular and Cellular Cardiology, 2012, 53, 497-508.	1.9	45
198	Reduced CD26 expression is associated with improved cardiac function after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2012, 53, 899-905.	1.9	11

#	Article	IF	CITATIONS
199	TGF \hat{l}^2 and BMP signaling in cardiac cushion formation: Lessons from mice and chicken. Differentiation, 2012, 84, 89-102.	1.9	70
200	The arterial and cardiac epicardium in development, disease and repair. Differentiation, 2012, 84, 41-53.	1.9	95
201	Cardiomyogenic differentiationâ€independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischaemic mouse hearts. Journal of Cellular and Molecular Medicine, 2012, 16, 1508-1521.	3.6	39
202	Human cardiomyocyte progenitor cells: a short history of nearly everything. Journal of Cellular and Molecular Medicine, 2012, 16, 1669-1673.	3.6	10
203	Shear induced collateral artery growth modulated by endoglin but not by <scp>ALK1</scp> . Journal of Cellular and Molecular Medicine, 2012, 16, 2440-2450.	3.6	38
204	Gap Junctional Coupling with Cardiomyocytes is Necessary but Not Sufficient for Cardiomyogenic Differentiation of Cocultured Human Mesenchymal Stem Cells. Stem Cells, 2012, 30, 1236-1245.	3.2	28
205	Early statin treatment prior to primary PCI for acute myocardial infarction: REPERATOR, a randomized placeboâ€controlled pilot trial. Catheterization and Cardiovascular Interventions, 2012, 80, 756-765.	1.7	43
206	Age-dependent alteration of TGF- \hat{l}^2 signalling in osteoarthritis. Cell and Tissue Research, 2012, 347, 257-265.	2.9	119
207	Cardiac Regeneration: Stem Cells and Beyond. Current Medicinal Chemistry, 2012, 19, 5993-6002.	2.4	6
208	CD26 Inhibition Enhances Perfusion Recovery in ApoE-/-Mice. Current Vascular Pharmacology, 2012, 11, 21-28.	1.7	3
209	Forkhead box protein P1 as a downstream target of transforming growth factor- \hat{l}^2 induces collagen synthesis and correlates with a more stable plaque phenotype. Atherosclerosis, 2011, 218, 33-43.	0.8	27
210	Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts. PLoS ONE, 2011, 6, e24164.	2.5	64
211	MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. Journal of Cellular and Molecular Medicine, 2011, 15, 1474-1482.	3.6	114
212	Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells. Journal of Cellular and Molecular Medicine, 2011, 15, 2675-2683.	3.6	31
213	Low oxygen tension positively influences cardiomyocyte progenitor cell function. Journal of Cellular and Molecular Medicine, 2011, 15, 2723-2734.	3.6	34
214	Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research, 2011, 6, 206-214.	0.7	379
215	In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGF \hat{l}^2 -signaling and WT1. Basic Research in Cardiology, 2011, 106, 829-847.	5.9	63
216	Tgf \hat{l}^2 /Alk5 signaling is required for shear stress induced klf2 expression in embryonic endothelial cells. Developmental Dynamics, 2011, 240, 1670-1680.	1.8	55

#	Article	IF	CITATIONS
217	Shedding New Light on the Mechanism Underlying Stem Cell Therapy for the Heart. Molecular Therapy, 2011, 19, 1186-1188.	8.2	7
218	Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics. Cardiovascular Research, 2011, 89, 680-688.	3.8	74
219	Letter by Sluijter et al Regarding Article, "Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism― Circulation, 2011, 124, e456; author's reply e457.	1.6	1
220	Lack of Primary Cilia Primes Shear-Induced Endothelial-to-Mesenchymal Transition. Circulation Research, 2011, 108, 1093-1101.	4.5	173
221	MicroRNA-23 Restricts Cardiac Valve Formation by Inhibiting <i>Has2</i> and Extracellular Hyaluronic Acid Production. Circulation Research, 2011, 109, 649-657.	4.5	108
222	TGF-&	1.6	62
223	ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. Journal of Bone and Mineral Research, 2010, 25, 1208-1215.	2.8	141
224	Peripheral Blood Derived Cell Trafficking for Cardiac Regeneration. Current Stem Cell Research and Therapy, 2010, 5, 303-313.	1.3	1
225	Active Wnt signaling in response to cardiac injury. Basic Research in Cardiology, 2010, 105, 631-641.	5.9	97
226	Hyperpolarization Induces Differentiation in Human Cardiomyocyte Progenitor Cells. Stem Cell Reviews and Reports, 2010, 6, 178-185.	5.6	43
227	Signaling by members of the TGF- \hat{l}^2 family in vascular morphogenesis and disease. Trends in Cell Biology, 2010, 20, 556-567.	7.9	348
228	Foetal and adult cardiomyocyte progenitor cells have different developmental potential. Journal of Cellular and Molecular Medicine, 2010, 14, 861-870.	3.6	29
229	Cardiac malformations in <i>Pdgfrα</i> mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Developmental Dynamics, 2010, 239, 2307-2317.	1.8	53
230	Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovascular Diabetology, 2010, 9, 55.	6.8	17
231	Hyaluronic acid metabolism is increased in unstable plaques. European Journal of Clinical Investigation, 2010, 40, 818-827.	3.4	33
232	MicroRNA-1 and -499 Regulate Differentiation and Proliferation in Human-Derived Cardiomyocyte Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 859-868.	2.4	302
233	Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. Journal of Experimental Medicine, 2010, 207, 85-100.	8.5	159
234	Correction: Increase in ALK1/ALK5 Ratio as a Cause for Elevated MMP-13 Expression in Osteoarthritis in Humans and Mice. Journal of Immunology, 2010, 185, 2629-2629.	0.8	3

#	Article	IF	CITATIONS
235	Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovascular Research, 2010, 85, 494-502.	3.8	35
236	IFNÎ ³ -dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. American Journal of Physiology - Cell Physiology, 2010, 299, C354-C362.	4.6	56
237	Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro. Biochemical and Biophysical Research Communications, 2010, 392, 283-288.	2.1	44
238	Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. Journal of Molecular and Cellular Cardiology, 2010, 48, 254-260.	1.9	21
239	Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. Journal of Cell Biology, 2010, 188, i1-i1.	5.2	0
240	Young at heart. An update on cardiac regeneration. Minerva Medica, 2010, 101, 255-70.	0.9	4
241	VEGF and inhibitors of TGF \hat{l}^2 type-I receptor kinase synergistically promote blood-vessel formation by inducing $\hat{l}\pm 5$ -integrin expression. Journal of Cell Science, 2009, 122, 3294-3302.	2.0	90
242	A New Direction for Cardiac Regeneration Therapy. Circulation: Heart Failure, 2009, 2, 643-653.	3.9	94
243	Cell Therapy for Myocardial Regeneration. Current Molecular Medicine, 2009, 9, 287-298.	1.3	18
244	Increased Expression of the Transforming Growth Factor- \hat{l}^2 Signaling Pathway, Endoglin, and Early Growth Response-1 in Stable Plaques. Stroke, 2009, 40, 439-447.	2.0	50
245	A new in vitro model for stem cell differentiation and interaction. Stem Cell Research, 2009, 2, 108-112.	0.7	5
246	Stem Cells from In- or Outside of the Heart: Isolation, Characterization, and Potential for Myocardial Tissue Regeneration. Pediatric Cardiology, 2009, 30, 699-709.	1.3	13
247	TGF-Î ² signaling in vascular biology and dysfunction. Cell Research, 2009, 19, 116-127.	12.0	476
248	Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.	3.7	19
249	Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 2009, 4, 232-243.	12.0	276
250	Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovascular Research, 2009, 83, 527-535.	3.8	158
251	Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opinion on Drug Discovery, 2009, 4, 357-372.	5.0	20
252	Increase in ALK1/ALK5 Ratio as a Cause for Elevated MMP-13 Expression in Osteoarthritis in Humans and Mice. Journal of Immunology, 2009, 182, 7937-7945.	0.8	251

#	Article	IF	Citations
253	Endoglin in angiogenesis and vascular diseases. Angiogenesis, 2008, 11, 79-89.	7.2	291
254	Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Netherlands Heart Journal, 2008, 16, 163-169.	0.8	129
255	TGF- \hat{l}^21 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 2008, 1, 138-149.	0.7	214
256	Transforming Growth Factor β–Induced Endothelial-to-Mesenchymal Transition: A Switch to Cardiac Fibrosis?. Trends in Cardiovascular Medicine, 2008, 18, 293-298.	4.9	143
257	The effect of hypoxia on cardiomyocyte progenitor cell function. Journal of Molecular and Cellular Cardiology, 2008, 44, 823.	1.9	0
258	Balance between Angiopoietin-1 and Angiopoietin-2 Is in Favor of Angiopoietin-2 in Atherosclerotic Plaques with High Microvessel Density. Journal of Vascular Research, 2008, 45, 244-250.	1.4	84
259	Toll-Like Receptor 4 Mediates Maladaptive Left Ventricular Remodeling and Impairs Cardiac Function After Myocardial Infarction. Circulation Research, 2008, 102, 257-264.	4.5	298
260	Controlling Cardiomyocyte Survival. Novartis Foundation Symposium, 2008, , 41-57.	1.1	12
261	Isolation and expansion of resident cardiac progenitor cells. Expert Review of Cardiovascular Therapy, 2007, 5, 33-43.	1.5	40
262	Compensatory signalling induced in the yolk sac vasculature by deletion of $TGF\hat{l}^2$ receptors in mice. Journal of Cell Science, 2007, 120, 4269-4277.	2.0	104
263	Smad7 and protein phosphatase 1alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biology, 2006, 7, 16.	3.0	50
264	Endoglin Has a Crucial Role in Blood Cell–Mediated Vascular Repair. Circulation, 2006, 114, 2288-2297.	1.6	124
265	Controlling cardiomyocyte survival. Novartis Foundation Symposium, 2006, 274, 41-51; discussion 51-7, 152-5, 272-6.	1.1	5
266	Gene expression profiling demonstrates that TGF- \hat{l}^21 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF- \hat{l}^2 signaling. Physiological Genomics, 2005, 21, 396-403.	2.3	33
267	TGF-β type II receptor–deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo. Blood, 2005, 106, 4234-4240.	1.4	36
268	The role of stem cells in cardiac regeneration. Journal of Cellular and Molecular Medicine, 2005, 9, 25-36.	3.6	98
269	Involvement of furin-like proprotein convertases in the arterial response to injury. Cardiovascular Research, 2005, 68, 136-143.	3.8	29
270	Defective paracrine signalling by $TGF\hat{l}^2$ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development (Cambridge), 2004, 131, 6237-6247.	2.5	141

#	Article	IF	CITATIONS
271	A Gain of Function Mutation in the Activation Loop of Plateletderived Growth Factor β-Receptor Deregulates Its Kinase Activity. Journal of Biological Chemistry, 2004, 279, 42516-42527.	3.4	23
272	Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO Journal, 2004, 23, 541-551.	7.8	222
273	Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO Journal, 2004, 23, 4018-4028.	7.8	592
274	Human stem cells shape the future of cardiac regeneration research. International Journal of Cardiology, 2004, 95, S20-S22.	1.7	6
275	Global Gene Expression Analysis Demonstrates that Transforming Growth Factor \hat{l}^21 (TGF- \hat{l}^21) Signals Exclusively through Receptor Complexes Involving TGF- \hat{l}^2 Receptor I and Identifies Numerous Targets of TGF- \hat{l}^2 Signaling Blood, 2004, 104, 2178-2178.	1.4	3
276	Controlling the Angiogenic Switch. Trends in Cardiovascular Medicine, 2003, 13, 301-307.	4.9	302
277	Distribution of phosphorylated Smad2 identifies target tissues of TGFβ ligands in mouse development. Gene Expression Patterns, 2003, 3, 355-360.	0.8	37
278	Controlling cell fate by bone morphogenetic protein receptors. Molecular and Cellular Endocrinology, 2003, 211, 105-113.	3.2	182
279	Activin Receptor-like Kinase (ALK)1 Is an Antagonistic Mediator of Lateral TGFβ/ALK5 Signaling. Molecular Cell, 2003, 12, 817-828.	9.7	631
280	BMP signaling components are expressed in human fracture callus. Bone, 2003, 33, 362-371.	2.9	123
281	TGF-β signaling–deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood, 2003, 102, 3129-3135.	1.4	141
282	Stimulation of Id1 Expression by Bone Morphogenetic Protein Is Sufficient and Necessary for Bone Morphogenetic Protein–Induced Activation of Endothelial Cells. Circulation, 2002, 106, 2263-2270.	1.6	280
283	Regulation of cell proliferation by Smad proteins. Journal of Cellular Physiology, 2002, 191, 1-16.	4.1	418
284	Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO Journal, 2002, 21, 2580-2590.	7.8	100
285	Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal, 2002, 21, 1743-1753.	7.8	972
286	EXPRESSION AND ACTIVATION OF THE BMP-SIGNALING COMPONENTS IN HUMAN FRACTURE NONUNIONS. Journal of Bone and Joint Surgery - Series A, 2002, 84, 1909-1918.	3.0	86
287	Transforming growth factor beta signal transduction. Journal of Leukocyte Biology, 2002, 71, 731-40.	3.3	171
288	Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO Journal, 2001, 20, 1663-1673.	7.8	488

#	Article	IF	CITATIONS
289	Expression of TGF-? stimulated clone-22 (TSC-22) in mouse development and TGF-? signalling. Developmental Dynamics, 2000, 218, 563-572.	1.8	30
290	Expression of the inhibitory Smad7 in early mouse development and upregulation during embryonic vasculogenesis. Developmental Dynamics, 2000, 218, 663-670.	1.8	20
291	Signaling of transforming growth factorâ€Î² family members through Smad proteins. FEBS Journal, 2000, 267, 6954-6967.	0.2	466
292	Expression of the $\hat{l}\pm6A$ integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation, 1999, 64, 173-184.	1.9	21
293	Ectopic expression of the transforming growth factor? type II receptor disrupts mesoderm organisation during mouse gastrulation. Developmental Dynamics, 1999, 214, 141-151.	1.8	21
294	Expression of the $\hat{l}\pm6A$ integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation, 1999, 64, 173.	1.9	17
295	Mouse embryonic stem cells with aberrant transforming growth factor \hat{l}^2 signalling exhibit impaired differentiation in vitro and in vivo. Differentiation, 1998, 63, 101-113.	1.9	29
296	Identification of two distinct functions for TGF- \hat{l}^2 in early mouse development. Differentiation, 1998, 64, 19-31.	1.9	23
297	Knockout and knockin of the beta 1 exon D define distinct roles for integrin splice variants in heart function and embryonicÂdevelopment. Genes and Development, 1998, 12, 1202-1216.	5.9	83
298	From projects to policy: 'healthy cities' as a mechanism for policy change for health?. Health Promotion International, 1997, 12, 311-322.	1.8	53
299	Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mechanisms of Development, 1995, 52, 109-123.	1.7	111
300	WT1 in Cardiac Development and Disease., 0,, 211-233.		11