Qiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081141/publications.pdf

Version: 2024-02-01

66343 79698 6,164 168 42 73 h-index citations g-index papers 171 171 171 5055 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Narrowband diffuse thermal emitter based on surface phonon polaritons. Nanophotonics, 2022, 11, 4115-4122.	6.0	11
2	Ti ₃ C ₂ T _x MXene Decorated Textiles with Low Thermal Emissivity. Journal of Physics: Conference Series, 2022, 2242, 012008.	0.4	2
3	Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light: Science and Applications, 2022, 11, 122.	16.6	56
4	Dynamic radiation regulations for thermal comfort. Nano Energy, 2022, 100, 107435.	16.0	49
5	Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science and Applications, 2022, 11, .	16.6	108
6	Whole LWIR Directional Thermal Emission Based on ENZ Thin Films. Laser and Photonics Reviews, 2022, 16, .	8.7	21
7	Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics, 2022, 11, 3613-3622.	6.0	23
8	CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography. Advanced Functional Materials, 2021, 31, 2007417.	14.9	20
9	All-Dielectric Metasurface Refractive Index Sensor with Microfluidics. Journal of Physics: Conference Series, 2021, 1838, 012001.	0.4	3
10	High-efficient photoacoustic generation with an ultrathin metallic multilayer broadband absorber. Optics Express, 2021, 29, 8490.	3.4	9
11	The Detection of Acetylcholinesterase Based on All-Dielectric Nanoantennas. Journal of Physics: Conference Series, 2021, 1838, 012022.	0.4	0
12	A Simple Method to Reversibly Switch the Reflectance Spectrum of a Layered Structure Consists of an Ultra-Thin Film Phase-Change Material GST. Journal of Physics: Conference Series, 2021, 1838, 012010.	0.4	0
13	Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 2021, 12, 1805.	12.8	184
14	Tunable Perfect Absorption Structures Based on Cavity Coupling and Plasmon Hybrid Mode. IEEE Photonics Journal, 2021, 13, 1-9.	2.0	5
15	Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Letters, 2021, 21, 3879-3886.	9.1	124
16	Infrared Camouflage Utilizing Ultrathin Flexible Largeâ€5cale Highâ€Temperatureâ€Tolerant Lambertian Surfaces. Laser and Photonics Reviews, 2021, 15, 2000391.	8.7	23
17	All-Dielectric Metasurface for Sensing Microcystin-LR. Electronics (Switzerland), 2021, 10, 1363.	3.1	12
18	Nonvolatile Optically Reconfigurable Radiative Metasurface with Visible Tunability for Anticounterfeiting. Nano Letters, 2021, 21, 5269-5276.	9.1	72

#	Article	IF	Citations
19	Vanadium Oxide Nanoparticles Doped Polymer to Modulate Thermal Emissivity. Journal of Physics: Conference Series, 2021, 2002, 012057.	0.4	0
20	Thermal Emissivity Measurement with Two-temperature Method. Journal of Physics: Conference Series, 2021, 2002, 012056.	0.4	0
21	Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica, 2021, 8, 1290.	9.3	7 5
22	Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display. Nanophotonics, 2021, 10, 4125-4131.	6.0	14
23	Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 2020, 69, 104449.	16.0	164
24	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. Laser and Photonics Reviews, 2020, 14, 1900162.	8.7	103
25	Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today, 2020, 35, 100987.	11.9	55
26	Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography. Nano Letters, 2020, 20, 8841-8846.	9.1	31
27	Using Reflectometric Interference Spectroscopy to Real-Time Monitor Amphiphile-Induced Orientational Responses of Liquid-Crystal-Loaded Silica Colloidal Crystal Films. Analytical Chemistry, 2020, 92, 12071-12078.	6.5	12
28	Flat photonics for broadband light-trapping. Applied Physics Letters, 2020, 117, .	3.3	5
29	Deformable manganite perovskite-based resonator with adaptively modulating infrared radiation. Applied Materials Today, 2020, 21, 100808.	4.3	8
30	Photothermal Imaging of Individual Nano-Objects with Large Scattering Cross Sections. Journal of Physical Chemistry A, 2020, 124, 1659-1665.	2.5	4
31	Allâ€Optical Nanoscale Heating and Thermometry with Resonant Dielectric Nanoparticles for Controllable Drug Release in Living Cells. Laser and Photonics Reviews, 2020, 14, 1900082.	8.7	34
32	High- <i>Q</i> All-Dielectric Metasurface: Super and Suppressed Optical Absorption. ACS Photonics, 2020, 7, 1436-1443.	6.6	137
33	High-temperature infrared camouflage with efficient thermal management. Light: Science and Applications, 2020, 9, 60.	16.6	187
34	Linewidth reduction effect of a cavity-coupled dual-passband plasmonic filter. Optics Express, 2020, 28, 8753.	3.4	6
35	Tunable metasurfaces based on phase-change materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154202.	0.5	5
36	Spatial and dynamical multi-level control over thermal emission. , 2020, , .		0

#	Article	IF	Citations
37	An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy, 2019, 65, 103998.	16.0	103
38	Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Advanced Optical Materials, 2019, 7, 1900595.	7.3	123
39	Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Applied Physics Letters, 2019, 115, .	3.3	11
40	CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19647-19653.	8.0	9
41	Zero-index metamaterial based all-dielectric nanoantenna. AIP Advances, 2019, 9, 035115.	1.3	6
42	Nanoscale Lamb wave–driven motors in nonliquid environments. Science Advances, 2019, 5, eaau8271.	10.3	30
43	Atomic switches of metallic point contacts by plasmonic heating. Light: Science and Applications, 2019, 8, 34.	16.6	26
44	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, 2019, 11, .	3.8	21
45	Constructing Metal Arch Nanobridges Utilizing a Photothermalâ€Induced Nanobonding Technique. Advanced Electronic Materials, 2019, 5, 1800807.	5.1	5
46	Cavity-driven hybrid plasmonic ultra-narrow bandpass filter. Optics Express, 2019, 27, 20397.	3.4	16
47	Photoacoustic properties of metal-insulator-metal nanostructures. , 2019, , .		0
48	Spatial regulation of thermal emission based on polar material., 2019,,.		0
49	Gold nanosprings formed by rolled-up technique. , 2019, , .		0
50	Plasmonic-enhanced targeted nanohealing of metallic nanostructures. Applied Physics Letters, 2018, 112, .	3.3	14
51	Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926.	47.7	179
52	Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 2018, 10, 4415-4420.	5.6	51
53	Photothermalâ€Induced Nanowelding of Metal–Semiconductor Heterojunction in Integrated Nanowire Units. Advanced Electronic Materials, 2018, 4, 1700614.	5.1	24
54	Thermodynamic assessment of solar photon-enhanced thermionic conversion. Applied Energy, 2018, 223, 134-145.	10.1	19

#	Article	IF	CITATIONS
55	Bandwidth tunable microwave photonic filter based on digital and analog modulation. Optical Fiber Technology, 2018, 42, 34-38.	2.7	4
56	Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array. Nanoscale, 2018, 10, 19117-19124.	5.6	22
57	Adaptive thermal camouflage based on phase-changing material GST. , 2018, , .		0
58	Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances. Optics Express, 2018, 26, 23918.	3.4	40
59	Polarization-Independent Optical Broadband Angular Selectivity. ACS Photonics, 2018, 5, 4125-4131.	6.6	26
60	Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge ₂ Sb ₂ Te ₅ . Optical Materials Express, 2018, 8, 2312.	3.0	27
61	Thermal camouflage based on the phase-changing material GST. Light: Science and Applications, 2018, 7, 26.	16.6	255
62	Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice. Nano Letters, 2018, 18, 5036-5041.	9.1	46
63	Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. Optics Express, 2018, 26, 4279.	3.4	28
64	Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Optics Express, 2018, 26, 17772.	3.4	32
65	Nearâ€Infrared Superâ€Absorbing Allâ€Dielectric Metasurface Based on Singleâ€Layer Germanium Nanostructures. Laser and Photonics Reviews, 2018, 12, 1800076.	8.7	70
66	Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress. Optics Letters, 2018, 43, 2422.	3.3	5
67	Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials. Optics Letters, 2018, 43, 1295.	3.3	32
68	Au ₈₀ Sn ₂₀ -based targeted noncontact nanosoldering with low power consumption. Optics Letters, 2018, 43, 4989.	3.3	6
69	Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon. Optics Letters, 2018, 43, 5230.	3.3	34
70	Optically controllable nanobreaking of metallic nanowires. Applied Physics Letters, 2017, 110, .	3.3	9
71	Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force. Physical Review Letters, 2017, 118, 043601.	7.8	86
72	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- $\langle i \rangle \hat{l} \mu \langle i \rangle \hat{a} \in \mathbb{R}^3$ metals. Applied Physics Letters, 2017, 110, .	3.3	128

#	Article	IF	CITATIONS
73	Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science and Applications, 2017, 6, e16194-e16194.	16.6	236
74	Broad band optical band-reject filters in near-infrared regime utilizing bilayer Ag metasurface. Journal of Applied Physics, 2017, 121, .	2.5	13
75	Chip-Scale Plasmonic Sum Frequency Generation. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	4
76	Controlling fluorescence emission with splitâ€ringâ€resonatorâ€based plasmonic metasurfaces. Laser and Photonics Reviews, 2017, 11, 1600299.	8.7	25
77	Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phaseâ€Changing Material GST. Laser and Photonics Reviews, 2017, 11, 1700091.	8.7	180
78	Thermionic energy conversion for concentrating solar power. Applied Energy, 2017, 208, 1318-1342.	10.1	72
79	Light-induced reversible expansion of individual gold nanoplates. AIP Advances, 2017, 7, .	1.3	3
80	Strongly enhanced molecular fluorescence with ultra-thin optical magnetic mirror metasurfaces. Optics Letters, 2017, 42, 4478.	3.3	12
81	Wavelength-tunable thermal sources with nonvolatile phase changing material. , 2017, , .		0
82	Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase Changing Material GST. , 2017, , .		2
83	Ultra-broad band absorber made by tungsten and aluminium. Journal of Physics: Conference Series, 2016, 680, 012039.	0.4	0
84	Identification and control of multiple leaky plasmon modes in silver nanowires. Laser and Photonics Reviews, 2016, 10, 278-286.	8.7	38
85	Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.	7.3	94
86	Enhanced Second Harmonic Generation in AU/AI2O3/AU absorber. Journal of Physics: Conference Series, 2016, 680, 012020.	0.4	1
87	Optically controlled local nanosoldering of metal nanowires. Applied Physics Letters, 2016, 108, .	3.3	33
88	Laser-induced single point nanowelding of silver nanowires. Applied Physics Letters, 2016, 108, .	3.3	43
89	Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting. Scientific Reports, 2016, 6, 29195.	3.3	14
90	Switchable absorber by vanadium dioxide. , 2016, , .		1

#	Article	IF	Citations
91	Laser assisted welding of layered metallic nanostructure. , 2016, , .		O
92	Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission. Applied Optics, 2016, 55, 148.	2.1	30
93	Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Scientific Reports, 2016, 6, 19490.	3.3	67
94	Nanosoldering of hetero-structures consisting of silver nanowires and gold nanoplate for interconnect. , 2016, , .		0
95	Sacrificial solder based nanowelding of ZnO nanowires. Journal of Physics: Conference Series, 2016, 680, 012027.	0.4	6
96	Photothermal Switching Based on Silicon Mach–Zehnder Interferometer Integrated With Light Absorber. IEEE Photonics Journal, 2016, 8, 1-10.	2.0	14
97	Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna. Nanoscale, 2016, 8, 4047-4053.	5.6	45
98	Laser assisted welding of gold nanowires. Journal of Physics: Conference Series, 2016, 680, 012028.	0.4	0
99	Fluorescence enhancement with metamaterial mirrors. Journal of Physics: Conference Series, 2016, 680, 012033.	0.4	1
100	A miniaturized compact open-loop RFOG with demodulation signal compensation technique to suppress intensity modulation noise. Optics Communications, 2016, 359, 364-371.	2.1	17
101	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, .	3.3	29
102	Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates. Scientific Reports, 2015, 5, 13424.	3.3	13
103	Nanoscale Control of Temperature Distribution Using a Plasmonic Trimer. Plasmonics, 2015, 10, 911-918.	3.4	7
104	Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	41
105	Universal scaling behavior of the temperature increase of a heat nanoparticle on a substrate. Journal of Nanophotonics, 2015, 9, 093046.	1.0	0
106	Tunable unidirectional long-range surface plasmon polaritons launching based on nanoslits., 2015,,.		0
107	Controlling the angular radiation of single emitters using dielectric patch nanoantennas. Applied Physics Letters, 2015, 107, 031109.	3.3	25
108	Plasmonic sectoral horn nanoantennas. Optics Letters, 2014, 39, 3204.	3.3	28

#	Article	IF	CITATIONS
109	Grating-assisted enhanced optical transmission through a seamless gold film. Optics Express, 2014, 22, 5416.	3.4	21
110	Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Applied Physics Letters, 2014, 104, .	3.3	100
111	Film-coupled log-periodic optical antennas for near-infrared light absorption. , 2014, , .		0
112	Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles. Plasmonics, 2014, 9, 623-630.	3.4	38
113	Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale, 2014, 6, 1756-1762.	5.6	35
114	Residual intensity modulation in resonator fiber optic gyros with sinusoidal wave phase modulation. Journal of Zhejiang University: Science C, 2014, 15, 482-488.	0.7	4
115	Plasmonic enhanced photothermal effects and its applications. , 2014, , .		0
116	Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Optics Letters, 2014, 39, 1137.	3.3	162
117	Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Scientific Reports, 2014, 4, 6080.	3.3	7
118	Sub-wavelength quarter-wave plate based on plasmonic patch antennas. Applied Physics Letters, 2013, 103, .	3.3	11
119	Two-Dimensional Analysis Photothermal Properties in Nanoscale Plasmonic Waveguides for Optical Interconnect. Journal of Lightwave Technology, 2013, 31, 4051-4056.	4.6	10
120	Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 2013, 21, 13125.	3.4	31
121	Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. Journal of Physical Chemistry C, 2013, 117, 10636-10642.	3.1	122
122	Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Applied Physics Letters, 2013, 102, 201109.	3.3	15
123	Nanostructured plasmonic devices and their applications. , 2013, , .		0
124	Near-infrared broadband absorber with film-coupled multilayer nanorods. Optics Letters, 2013, 38, 2247.	3.3	68
125	Plasmonic wave propagation in silver nanowires: guiding modes or not?. Optics Express, 2013, 21, 8587.	3.4	54
126	A plasmon ruler based on nanoscale photothermal effect. Optics Express, 2013, 21, 172.	3.4	62

#	Article	IF	CITATIONS
127	Hybrid photonic-plasmonic molecule based on metal/Si disks. Optics Express, 2013, 21, 11037.	3.4	22
128	Polarization-sensitive perfect absorbers at near-infrared wavelengths: Erratum. Optics Express, 2013, 21, A229.	3.4	9
129	Polarization-sensitive perfect absorbers at near-infrared wavelengths. Optics Express, 2013, 21, A111.	3.4	81
130	Plasmonic devices for optical interconnect. , 2012, , .		1
131	Experimental Demonstration of Plasmon Propagation, Coupling, and Splitting in Silver Nanowire at 1550-nm Wavelength. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1107-1111.	2.9	27
132	All-optical temporal differentiation of ultra-high-speed picosecond pulses based on compact silicon microring resonator. Electronics Letters, 2011, 47, 814-816.	1.0	17
133	Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97, .	3.3	45
134	Coupled mode theory analysis of mode-splitting in coupled cavity system. Optics Express, 2010, 18, 8367.	3.4	316
135	Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18, 13173.	3.4	136
136	Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. Optics Express, 2010, 18, 15531.	3.4	36
137	Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35, 3153.	3.3	74
138	Efficient directional coupler based on plasmonic waveguide for photonic integrated circuits. , 2010, , .		0
139	High-Q Photonic Crystal Microcavities. Springer Series in Optical Sciences, 2010, , 327-359.	0.7	0
140	Optical signal processing in SOI waveguide devices. , 2009, , .		0
141	Fast light in silicon ring resonator with resonance-splitting. Optics Express, 2009, 17, 933.	3.4	55
142	All-optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator. Chinese Optics Letters, 2009, 7, 12-14.	2.9	6
143	Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation. Chinese Optics Letters, 2009, 7, 29-31.	2.9	40
144	A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator. IEEE Photonics Technology Letters, 2009, 21, 60-62.	2.5	92

#	Article	lF	Citations
145	Signal Processing in Silicon Waveguides. , 2009, , .		O
146	Signal processing in silicon waveguides. Proceedings of SPIE, 2009, , .	0.8	0
147	Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems. , 2009, , .		3
148	Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 706-712.	2.9	50
149	Generation and Transmission of Optical Carrier Suppressed-Optical Differential (Quadrature) Phase-Shift Keying (OCS-OD(Q)PSK) Signals in Radio Over Fiber Systems. Journal of Lightwave Technology, 2008, 26, 2611-2618.	4.6	27
150	System Performances of On-Chip Silicon Microring Delay Line for RZ, CSRZ, RZ-DB and RZ-AMI Signals. Journal of Lightwave Technology, 2008, 26, 3744-3751.	4.6	13
151	Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers. Journal of the Optical Society of America B: Optical Physics, 2008, 25, C109.	2.1	23
152	Optically tuneable microwave-photonic phase shifter based on silicon microring resonator. , 2008, , .		2
153	Concentric silicon micro-ring resonators with enhanced transmission notch depth. Proceedings of SPIE, 2008, , .	0.8	1
154	Optical signal processing in silicon nano-waveguides. , 2008, , .		1
155	Simultaneous Transmission of Point-to-Point Data and Selective Delivery of Video Services in a WDM-PON Using ASK/SCM Modulation Format. , 2008, , .		11
156	Dense wavelength conversion and multicasting in a resonance-split silicon microring. Applied Physics Letters, 2008, 93, .	3.3	47
157	Slow Light and Signal Processing in Silicon Nano-waveguides. , 2008, , .		1
158	An All-optical Metro-Access Interface for a PON System Based on NRZ to FSK Format Conversion. , 2008, , .		1
159	Wavelength conversion in a silicon mode-split micro-ring resonator with $1G$ data rate. , 2008 , , .		3
160	Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. , 2008, , .		3
161	Pulse delay and advancement in ring resonator with mutual modes coupling. , 2008, , .		0
162	Performance of a silicon-microring slow-light delay line for advanced modulation formats., 2008,,.		2

#	Article	IF	CITATIONS
163	160-Gb/s NRZ-to-PSK conversion using linear filtering in silicon ring resonators. , 2008, , .		O
164	System performance of slow-light buffering and storage in silicon nano-waveguide., 2007, 6783, 695.		63
165	Slow light in multi-line Brillouin gain spectrum. Optics Express, 2007, 15, 1871.	3.4	64
166	Broad-Bandwidth Slow Light in Multi-Line Brillouin Gain Spectrum., 2007,,.		0
167	Ultrathin High Qualityâ€Factor Planar Absorbers/Emitters Based on Uniaxial/Biaxial Anisotropic van der Waals Polar Crystals. Advanced Optical Materials, 0, , 2100645.	7.3	6
168	Feature issue introduction: Materials and Devices for Engineering of Thermal Light. Optical Materials Express, 0, , .	3.0	0