Atish D Choudhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081139/publications.pdf

Version: 2024-02-01

42 papers 3,272 citations

361045 20 h-index 37 g-index

47 all docs

47 docs citations

47 times ranked

6503 citing authors

#	Article	IF	CITATIONS
1	Evaluating the Role of Stereotactic Body Radiation Therapy With Respect to Androgen Receptor Signaling Inhibitors for Oligometastatic Prostate Cancer. Advances in Radiation Oncology, 2022, 7, 100808.	0.6	4
2	Implementation of a prostate cancerâ€specific targeted sequencing panel for credentialing of patientâ€derived cell lines and genomic characterization of patient samples. Prostate, 2022, , .	1.2	1
3	Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: experience at Dana Farber and in the PROCEED Registry. Prostate Cancer and Prostatic Diseases, 2022, 25, 314-319.	2.0	6
4	Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nature Biomedical Engineering, 2022, 6, 257-266.	11.6	32
5	A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kβ/Ĩ′, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2022, 28, 2257-2269.	3.2	11
6	PTENâ€PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate, 2022, 82,	1,2	20
7	PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. Npj Precision Oncology, 2022, 6, .	2.3	9
8	Results of a multicenter, phase 2 study of nivolumab and ipilimumab for patients with advanced rare genitourinary malignancies. Cancer, 2021, 127, 840-849.	2.0	51
9	Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions. Ca-A Cancer Journal for Clinicians, 2021, 71, 176-190.	157.7	101
10	Transdermal oestrogen for advanced prostate cancer. Lancet, The, 2021, 397, 556-557.	6.3	1
10	Transdermal oestrogen for advanced prostate cancer. Lancet, The, 2021, 397, 556-557. EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456.	6.3 5.7	118
	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1		
11	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456.	5.7	118
11 12	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456. Reply by Authors. Journal of Urology, 2021, 205, 1274-1274. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer:	5.7 0.2	0
11 12 13	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456. Reply by Authors. Journal of Urology, 2021, 205, 1274-1274. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes?. Journal of Urology, 2021, 205, 1263-1274. Circulating Cell-Free DNA as Biomarker of Taxane Resistance in Metastatic Castration-Resistant	5.7 0.2 0.2	118 0 10
11 12 13	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456. Reply by Authors. Journal of Urology, 2021, 205, 1274-1274. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes?. Journal of Urology, 2021, 205, 1263-1274. Circulating Cell-Free DNA as Biomarker of Taxane Resistance in Metastatic Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 4055. Towards Biologically Driven Decision-making in Metastatic Hormone-sensitive Prostate Cancer.	5.7 0.2 0.2	118 0 10
11 12 13 14	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456. Reply by Authors. Journal of Urology, 2021, 205, 1274-1274. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes?. Journal of Urology, 2021, 205, 1263-1274. Circulating Cell-Free DNA as Biomarker of Taxane Resistance in Metastatic Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 4055. Towards Biologically Driven Decision-making in Metastatic Hormone-sensitive Prostate Cancer. European Urology Oncology, 2021, 4, 924-924. A model combining clinical and genomic factors to predict response to PD-1/PD-L1 blockade in	5.7 0.2 0.2 1.7	118 0 10 1

#	Article	IF	Citations
19	Sensitive Detection of Minimal Residual Disease in Patients Treated for Early-Stage Breast Cancer. Clinical Cancer Research, 2020, 26, 2556-2564.	3.2	109
20	<i>ATM</i> Loss Confers Greater Sensitivity to ATR Inhibition Than PARP Inhibition in Prostate Cancer. Cancer Research, 2020, 80, 2094-2100.	0.4	71
21	Abstract 3521: Transcriptome analysis of TCGA prostate cancer samples identifies an association of poorer survival and aggressive disease biology with CDC-like kinase (CLK) expression and spliceosome regulation., 2020,,.		0
22	Retinoblastoma Loss in Cancer: Casting a Wider Net. Clinical Cancer Research, 2019, 25, 4199-4201.	3.2	5
23	CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. Cell Reports, 2019, 29, 2355-2370.e6.	2.9	45
24	Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer. European Urology, 2019, 76, 89-97.	0.9	158
25	A phase 2 trial of abiraterone acetate without glucocorticoids for men with metastatic castrationâ€resistant prostate cancer. Cancer, 2019, 125, 524-532.	2.0	8
26	Evaluating a Video-Based, Personalized Webpage in Genitourinary Oncology Clinical Trials: A Phase 2 Randomized Trial. Journal of Medical Internet Research, 2019, 21, e12044.	2.1	2
27	Association of Cell-Free DNA Tumor Fraction and Somatic Copy Number Alterations With Survival in Metastatic Triple-Negative Breast Cancer. Journal of Clinical Oncology, 2018, 36, 543-553.	0.8	162
28	Enrichment of FGFR3-TACC3 Fusions in Patients With Bladder Cancer Who Are Young, Asian, or Have Never Smoked. JCO Precision Oncology, 2018, 2, 1-11.	1.5	2
29	A dose finding clinical trial of cabozantinib (XL184) administered in combination with abiraterone acetate in metastatic castrationâ€resistant prostate cancer. Prostate, 2018, 78, 1053-1062.	1.2	4
30	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
31	Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight, 2018, 3, .	2.3	94
32	Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Research, 2017, 77, 753-765.	0.4	31
33	Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nature Communications, 2017, 8, 1324.	5.8	584
34	Abstract 5689: Identify tissue-of-origin in cancer cfDNA by whole genome sequencing. , 2017, , .		1
35	Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotechnology, 2014, 32, 479-484.	9.4	495
36	Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integrative Biology (United Kingdom), 2014, 6, 388-398.	0.6	51

ATISH D CHOUDHURY

#	Article	IF	CITATION
37	New Agents in Metastatic Prostate Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10, 1403-1409.	2.3	13
38	The Role of Genetic Markers in the Management of Prostate Cancer. European Urology, 2012, 62, 577-587.	0.9	92
39	Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell, 2005, 7, 193-204.	7.7	305
40	Hyperphosphorylation of the BARD1 Tumor Suppressor in Mitotic Cells*. Journal of Biological Chemistry, 2005, 280, 24669-24679.	1.6	13
41	Ubiquitination and Proteasomal Degradation of the BRCA1 Tumor Suppressor Is Regulated during Cell Cycle Progression. Journal of Biological Chemistry, 2004, 279, 33909-33918.	1.6	109
42	Coordination of an Array of Signaling Proteins through Homo- and Heteromeric Interactions Between PDZ Domains and Target Proteins. Journal of Cell Biology, 1998, 142, 545-555.	2.3	219