Soo-Chang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080864/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis. Bioactive Materials, 2022, 7, 14-25.	8.6	41
2	Long-term anti-inflammatory effects of injectable celecoxib nanoparticle hydrogels for Achilles tendon regeneration. Acta Biomaterialia, 2022, 144, 183-194.	4.1	10
3	Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration. Biomaterials, 2022, 284, 121526.	5.7	16
4	Thermoresponsive and suspension forming cyclotriphosphazene conjugate for delivery vehicle of antitumor drug camptothecin. Journal of Drug Delivery Science and Technology, 2021, 64, 102049.	1.4	3
5	Bone Generation Following Repeated Administration of Recombinant Bone Morphogenetic Protein 2. Tissue Engineering and Regenerative Medicine, 2021, 18, 155-164.	1.6	5
6	Fineâ€Tunable and Injectable 3D Hydrogel for Onâ€Demand Stem Cell Niche. Advanced Science, 2019, 6, 1900597.	5.6	46
7	3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate. Biomaterials, 2019, 218, 119338.	5.7	22
8	Injectable and Quadruple-Functional Hydrogel as an Alternative to Intravenous Delivery for Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2019, 11, 34634-34644.	4.0	25
9	Sustained Release of Exendin 4 Using Injectable and Ionic-Nano-Complex Forming Polymer Hydrogel System for Long-Term Treatment of Type 2 Diabetes Mellitus. ACS Applied Materials & Interfaces, 2019, 11, 15201-15211.	4.0	29
10	New approach for vertical bone regeneration using <i>in situ</i> gelling and sustained BMPâ€2 releasing poly(phosphazene) hydrogel system on periâ€implant site with critical defect in a canine model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 751-759.	1.6	17
11	Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials, 2017, 122, 91-104.	5.7	109
12	Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials, 2017, 132, 16-27.	5.7	104
13	An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nature Communications, 2017, 8, 533.	5.8	189
14	Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs. Biomaterials, 2017, 112, 248-256.	5.7	37
15	Improvement of anti-cancer drug efficacy via thermosensitive hydrogel in peritoneal carcinomatosis in gastric cancer. Oncotarget, 2017, 8, 108848-108858.	0.8	10
16	Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials, 2016, 106, 13-23.	5.7	137
17	Development of an Injectable Dopamine onjugated Poly(organophophazene) Hydrogel for Hemostasis. Bulletin of the Korean Chemical Society, 2016, 37, 372-377.	1.0	8
18	Injectable Ternary Nanocomplex Hydrogel for Long-Term Chemical Drug/Gene Dual Delivery. ACS Macro Letters, 2016, 5, 297-300.	2.3	22

#	Article	IF	CITATIONS
19	Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole. BioMed Research International, 2015, 2015, 1-9.	0.9	7
20	Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2. Journal of Controlled Release, 2015, 209, 67-76.	4.8	92
21	Targetable micelleplex hydrogel for long-term, effective, and systemic siRNA delivery. Biomaterials, 2014, 35, 7970-7977.	5.7	37
22	Injectable poly(organophosphazene) hydrogel system for effective paclitaxel and doxorubicin combination therapy. Journal of Drug Targeting, 2014, 22, 761-767.	2.1	18
23	An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery. Biomaterials, 2013, 34, 4493-4500.	5.7	36
24	Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts. Archives of Pharmacal Research, 2013, 36, 94-101.	2.7	14
25	Injectable and biodegradable poly(organophosphazene) hydrogel as a delivery system of docetaxel for cancer treatment. Journal of Drug Targeting, 2013, 21, 564-573.	2.1	28
26	Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials, 2013, 34, 1327-1336.	5.7	74
27	The distribution and retention of paclitaxel and doxorubicin in multicellular layer cultures. Oncology Reports, 2012, 27, 995-1002.	1.2	15
28	Injectable Polyplex Hydrogel for Localized and Long-Term Delivery of siRNA. ACS Nano, 2012, 6, 5757-5766.	7.3	87
29	Injectable poly(organophosphazene)–camptothecin conjugate hydrogels: Synthesis, characterization, and antitumor activities. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 582-590.	2.0	40
30	Injectable and Biodegradable Poly(Organophosphazene) Gel Containing Silibinin: Its Physicochemical Properties and Anticancer Activity. Journal of Pharmaceutical Sciences, 2012, 101, 2382-2391.	1.6	49
31	Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials, 2012, 33, 218-224.	5.7	93
32	Long-term theranostic hydrogel system for solid tumors. Biomaterials, 2012, 33, 2251-2259.	5.7	72
33	MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials, 2012, 33, 4836-4842.	5.7	53
34	The antitumor effect of a thermosensitive polymeric hydrogel containing paclitaxel in a peritoneal carcinomatosis model. Investigational New Drugs, 2012, 30, 1-7.	1.2	23
35	The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly(organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials, 2011, 32, 8271-8280.	5.7	29
36	Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group. Journal of Polymer Research, 2011, 18, 701-713.	1.2	16

#	Article	IF	CITATIONS
37	Design of Polyphosphazene Hydrogels with Improved Structural Properties by Use of Starâ€&haped Multithiol Crosslinkers. Macromolecular Bioscience, 2011, 11, 689-699.	2.1	15
38	Synthesis and characterization of thermosensitive poly(organophosphazene) gels with an amino functional group. Journal of Applied Polymer Science, 2011, 120, 998-1005.	1.3	5
39	Controlling the degradation rate of thermoresponsive photo-cross-linked poly(organophosphazene) hydrogels with compositions of depsipeptide and PEG chain lengths. Polymer Degradation and Stability, 2011, 96, 1261-1270.	2.7	11
40	Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. Journal of Drug Targeting, 2011, 19, 270-280.	2.1	55
41	In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels. Polymer Degradation and Stability, 2010, 95, 935-944.	2.7	27
42	Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Archives of Pharmacal Research, 2010, 33, 551-556.	2.7	34
43	Suppression of in vivo tumor growth by using a biodegradable thermosensitive hydrogel polymer containing chemotherapeutic agent. Investigational New Drugs, 2010, 28, 284-290.	1.2	17
44	Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. Journal of Controlled Release, 2010, 142, 101-107.	4.8	115
45	Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. Journal of Controlled Release, 2010, 147, 359-367.	4.8	79
46	Rapid Photocrosslinkable Thermoresponsive Injectable Polyphosphazene Hydrogels. Macromolecular Rapid Communications, 2010, 31, 2133-2139.	2.0	15
47	Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials, 2010, 31, 1349-1359.	5.7	47
48	Injectable, dual cross-linkable polyphosphazene blend hydrogels. Biomaterials, 2010, 31, 8107-8120.	5.7	52
49	Efficacy of an Injectable Thermosensitive Gel on Postoperative Adhesion in Rat Model. [Chapchi] Journal Taehan Oekwa Hakhoe, 2010, 79, 239.	1.1	5
50	Cyclotriphosphazene-Pt-DACH Conjugates with Dipeptide Spacers for Drug Delivery Systems. Journal of Bioactive and Compatible Polymers, 2010, 25, 274-291.	0.8	8
51	Dual Cross-Linking Systems of Functionally Photo-Cross-Linkable and Thermoresponsive Polyphosphazene Hydrogels for Biomedical Applications. Biomacromolecules, 2010, 11, 1741-1753.	2.6	48
52	Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 179-188.	2.0	30
53	Injectable and thermosensitive poly(organophosphazene) hydrogels for a 5â€fluorouracil delivery. Journal of Applied Polymer Science, 2009, 113, 3831-3839	1.3	25
54	Doxorubicin–polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials, 2009, 30, 4752-4762.	5.7	116

#	Article	IF	CITATIONS
55	Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Biomaterials, 2009, 30, 6178-6192.	5.7	70
56	A simple HPLC method for doxorubicin in plasma and tissues of nude mice. Archives of Pharmacal Research, 2009, 32, 605-611.	2.7	39
57	The use of injectable, thermosensitive poly(organophosphazene)–RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials, 2009, 30, 6295-6308.	5.7	87
58	Thermothickening modification of the poly(ethylene glycol) and amino acid ester grafted polyphosphazenes by monomethyl end-capped poly(ethylene glycol) addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333, 82-90.	2.3	8
59	Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications. Biomaterials, 2009, 30, 2349-2360.	5.7	125
60	Ion and pH Effect on the Lower Critical Solution Temperature Phase Behavior in Neutral and Acidic Poly(organophosphazene) Counterparts. Langmuir, 2009, 25, 2407-2418.	1.6	31
61	Polymer structureâ€dependent ion interaction studied by amphiphilic nonionic poly(organophosphazenes). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2022-2034.	2.4	8
62	Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethylenimine <i>in vitro</i> and <i>in vivo</i> . Journal of Gene Medicine, 2008, 10, 198-207.	1.4	44
63	Thermosensitive amphiphilic polyphosphazenes and their interaction with ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330, 184-192.	2.3	11
64	Effect of chitosan on the release of protein from thermosensitive poly(organophosphazene) hydrogels. International Journal of Pharmaceutics, 2008, 349, 188-195.	2.6	41
65	A thermosensitive poly(organophosphazene) hydrogel for injectable tissue-engineering applications. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1181-1193.	1.9	8
66	Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 340-346.	2.0	91
67	Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. International Journal of Pharmaceutics, 2006, 319, 29-36.	2.6	128
68	Morphology of spheroidal hepatocytes within injectable, biodegradable, and thermosensitive poly(organophosphazene) hydrogel as cell delivery vehicle. Journal of Bioscience and Bioengineering, 2006, 101, 238-242.	1.1	43
69	Effect of Inorganic and Organic Salts on the Thermogelling Behavior of Poly(organophosphazenes). Macromolecular Chemistry and Physics, 2006, 207, 412-418.	1.1	19
70	Controlling the Thermosensitive Gelation Properties of Poly(organophosphazenes) by Blending. Macromolecular Rapid Communications, 2005, 26, 1615-1618.	2.0	22
71	Hydrolysis-improved thermosensitive polyorganophosphazenes with α-amino-ï‰-methoxy-poly(ethylene) Tj E	TQq1_1_0.78 	84314 rgBT
72	Novel Thermosensitive 5-Fluorouracilâ^'Cyclotriphosphazene Conjugates:  Synthesis, Thermosensitivity, Degradability, and in Vitro Antitumor Activity. Bioconjugate Chemistry, 2005, 16, 1529-1535.	1.8	30

16

#	Article	IF	CITATIONS
73	Carbohydrate-specifically polyethylene glycol-modified ricin A-chain with improved therapeutic potential. International Journal of Biochemistry and Cell Biology, 2005, 37, 1525-1533.	1.2	46
74	A thermo-sensitive poly(organophosphazene) hydrogel used as an extracellular matrix for artificial pancreas. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1421-1431.	1.9	21
75	Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1-29). Journal of Chromatography A, 2004, 1061, 45-49.	1.8	27
76	Synthesis and Characterization of Biodegradable Thermosensitive Poly(organophosphazene) Gels. Macromolecules, 2004, 37, 4533-4537.	2.2	115
77	Synthesis and antitumor activity of novel thermosensitive platinum(II)–cyclotriphosphazene conjugates. Journal of Controlled Release, 2003, 90, 303-311.	4.8	42
78	Determination of the Specific Interaction between Sulfonylurea Incorporated Polymer and Rat Islets. Journal of Biochemistry, 2002, 131, 359-364.	0.9	2
79	A Thermosensitive Poly(organophosphazene) Gel. Macromolecules, 2002, 35, 3876-3879.	2.2	163
80	Thermosensitive and hydrolysis-sensitive poly(organophosphazenes). Polymer International, 2002, 51, 658-660.	1.6	17
81	Structural and Thermosensitive Properties of Cyclotriphosphazenes with Poly(ethylene glycol) and Amino Acid Esters as Side Groups. Macromolecules, 2001, 34, 7565-7569.	2.2	23
82	Solvent effect on the lower critical solution temperature of biodegradable thermosensitive poly(organophosphazenes). Polymer Bulletin, 2000, 45, 389-396.	1.7	11
83	Thermosensitive Cyclotriphosphazenes. Journal of the American Chemical Society, 2000, 122, 8315-8316.	6.6	66
84	Site-specific insulin conjugates with enhanced stability and extended action profile. Advanced Drug Delivery Reviews, 1999, 35, 289-306.	6.6	75
85	A novel polymeric conjugate carrying two different anticancer drugs. Polymer International, 1999, 48, 627-629.	1.6	9
86	A New Class of Biodegradable Thermosensitive Polymers. I. Synthesis and Characterization of Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Amino Acid Esters as Side Groups. Macromolecules, 1999, 32, 2188-2193.	2.2	120
87	A New Class of Biodegradable Thermosensitive Polymers. 2. Hydrolytic Properties and Salt Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxypoly(ethylene) Tj ETQq1 1 C).7 8.4 314 r	g BTi \$ Overloo
88	Synthesis and Antitumor Activity of Polyphosphazene/Methoxy-Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 142 To 1.3	d (glycol)/(Di
89	Synthesis and hydrolytic properties of polyphosphazene/(diamine)platinum/saccharide conjugates. Journal of Controlled Release, 1998, 55, 161-170.	4.8	18

⁹⁰Structural Properties of Silver(I) and Mercury(II) Complexes ofd-Lactobionate:Â Self-Assembled
Coordination Polymers. Inorganic Chemistry, 1998, 37, 5764-5768.1.9

#	Article	IF	CITATIONS
91	Glucose-Induced Release of Glycosylpoly(ethylene glycol) Insulin Bound to a Soluble Conjugate of Concanavalin A. Bioconjugate Chemistry, 1997, 8, 664-672.	1.8	62
92	Gel Filtration Fractionation of Cellulase from Trichoderma viride and Its Application to the Synthesis of the Branched Polysaccharide. Polymer Journal, 1994, 26, 387-391.	1.3	1
93	Attempt to Control Sequence of Branched Polysaccharide with Enzymatic Hydrolysis and/or Copolymerization. Polymer Journal, 1993, 25, 373-378.	1.3	6
94	Novel Reaction Route Including Enzymic Reaction For A Synthesis Of A Branched Polysaccharide. Journal of Carbohydrate Chemistry, 1992, 11, 1027-1037.	0.4	14
95	A new synthetic hypoglycaemic polysaccharide. Biochemical and Biophysical Research Communications, 1992, 188, 16-19.	1.0	19