Xiao-Bo Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080799/publications.pdf Version: 2024-02-01

XIAO-RO MIN

#	Article	IF	CITATIONS
1	Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Management, 2019, 83, 202-208.	3.7	227
2	Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Science of the Total Environment, 2021, 752, 141930.	3.9	172
3	Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environmental Science and Pollution Research, 2017, 24, 874-885.	2.7	170
4	Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China. Environmental Science and Pollution Research, 2017, 24, 27573-27586.	2.7	111
5	Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. Journal of Environmental Management, 2016, 181, 756-761.	3.8	110
6	Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors. Environmental Chemistry Letters, 2017, 15, 311-328.	8.3	93
7	Efficient Removal of Antimony (III, V) from Contaminated Water by Amino Modification of a Zirconium Metal–Organic Framework with Mechanism Study. Journal of Chemical & Engineering Data, 2017, 62, 1519-1529.	1.0	93
8	Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere, 2017, 168, 1142-1151.	4.2	92
9	Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. Journal of Hazardous Materials, 2018, 344, 343-349.	6.5	85
10	Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Transactions of Nonferrous Metals Society of China, 2013, 23, 208-218.	1.7	81
11	Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: A combined experimental and theoretical mechanistic study. Chemical Engineering Journal, 2018, 342, 211-219.	6.6	80
12	Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Science and Technology, 2017, 76, 192-200.	1.2	72
13	Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Environmental Science and Pollution Research, 2018, 25, 7600-7607.	2.7	71
14	The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application. BioMed Research International, 2013, 2013, 1-21.	0.9	70
15	Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal. Journal of Environmental Sciences, 2017, 51, 222-233.	3.2	63
16	Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Transactions of Nonferrous Metals Society of China, 2015, 25, 1298-1306.	1.7	61
17	Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization. Journal of Hazardous Materials, 2012, 217-218, 307-314.	6.5	60
18	Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environmental Science and Pollution Research, 2013, 20, 6050-6058.	2.7	60

Χιάο-Βο Μίν

#	Article	IF	CITATIONS
19	Effects of anions on calcium arsenate crystalline structure and arsenic stability. Hydrometallurgy, 2018, 177, 123-131.	1.8	54
20	Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods. Chemosphere, 2018, 207, 665-675.	4.2	54
21	Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. Journal of Molecular Structure, 2015, 1081, 389-394.	1.8	52
22	High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils. Chemosphere, 2017, 183, 266-276.	4.2	49
23	Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Minerals Engineering, 2014, 61, 105-112.	1.8	47
24	Immobilization potential and immobilization mechanism of arsenic in cemented paste backfill. Minerals Engineering, 2019, 138, 101-107.	1.8	46
25	Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. Journal of Colloid and Interface Science, 2019, 550, 147-158.	5.0	43
26	Selective removal of Clâ^' and Fâ^' from complex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere, 2020, 251, 126319.	4.2	41
27	Effect of scrubbing by NaClO backwashing on membrane fouling in anammox MBR. Science of the Total Environment, 2019, 670, 149-157.	3.9	40
28	Stabilization of arsenic sulfide sludge by hydrothermal treatment. Hydrometallurgy, 2020, 191, 105229.	1.8	40
29	Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations. Bioresource Technology, 2015, 185, 134-142.	4.8	38
30	Performance and characteristics of a nitritation air-lift reactor under long-term HRT shortening. International Biodeterioration and Biodegradation, 2016, 111, 45-53.	1.9	38
31	XPS and FTIR studies of sodium arsenate vitrification by cullet. Journal of Non-Crystalline Solids, 2016, 452, 238-244.	1.5	38
32	Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research. Journal of Chemical Technology and Biotechnology, 2017, 92, 325-333.	1.6	38
33	Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism. Environmental Science and Pollution Research, 2019, 26, 2761-2770.	2.7	38
34	Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide. Journal of Cleaner Production, 2016, 113, 910-918.	4.6	37
35	Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Applied Surface Science, 2018, 435, 1011-1019.	3.1	37
36	Sulfidation behavior of ZnFe2O4 roasted with pyrite: Sulfur inducing and sulfur-oxygen interface exchange mechanism. Applied Surface Science, 2016, 371, 67-73.	3.1	36

ΧΙΑΟ-ΒΟ ΜΙΝ

#	Article	IF	CITATIONS
37	Hydrothermal sulfidation of zinc-containing neutralization sludge for zinc recovery and stabilization. Minerals Engineering, 2012, 25, 14-19.	1.8	34
38	Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives. Transactions of Nonferrous Metals Society of China, 2013, 23, 1129-1138.	1.7	33
39	Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 449-458.	0.9	33
40	Separation of Cu and As in Cu-As-containing filter cakes by Cu 2+ -assisted acid leaching. Hydrometallurgy, 2017, 172, 45-50.	1.8	33
41	Mechanochemically Activated Microsized Zero-Valent Iron/Pyrite Composite for Effective Hexavalent Chromium Sequestration in Aqueous Solution. Journal of Chemical & Engineering Data, 2020, 65, 1936-1945.	1.0	33
42	Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 251-258.	0.7	32
43	Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresource Technology, 2019, 281, 66-71.	4.8	32
44	Behavior and effect of calcium during hydrothermal sulfidation and flotation of zinc-calcium-based neutralization sludge. Minerals Engineering, 2015, 74, 68-78.	1.8	30
45	Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis. Environmental Science and Pollution Research, 2016, 23, 8113-8119.	2.7	30
46	Inhibition kinetics of ammonium oxidizing bacteria under Cu(II) and As(III) stresses during the nitritation process. Chemical Engineering Journal, 2018, 352, 811-817.	6.6	30
47	Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil. Environmental Pollution, 2021, 289, 117830.	3.7	30
48	Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel's salt: Efficiency and mechanism. Journal of Hazardous Materials, 2022, 425, 127992.	6.5	29
49	Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. Environmental Science and Pollution Research, 2020, 27, 16484-16495.	2.7	28
50	Hydrothermal Treatment of Arsenic Sulfide Residues from Arsenic-Bearing Acid Wastewater. International Journal of Environmental Research and Public Health, 2018, 15, 1863.	1.2	25
51	Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal. Journal of Central South University, 2018, 25, 1033-1042.	1.2	25
52	Effect of simulated acid rain on stability of arsenic calcium residue in residue field. Environmental Geochemistry and Health, 2020, 42, 769-780.	1.8	25
53	Dissociation mechanism of particulate matter containing arsenic and lead in smelting flue gas by pyrite. Journal of Cleaner Production, 2020, 259, 120875.	4.6	25
54	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25

ΧΙΑΟ-ΒΟ ΜΙΝ

#	Article	IF	CITATIONS
55	Insights into water-mediated ion clustering in aqueous CaSO ₄ solutions: pre-nucleation cluster characteristics studied by ab initio calculations and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 11390-11403.	1.3	24
56	Synergistic chromium(VI) reduction and phenol oxidative degradation by FeS2/FeO and persulfate. Chemosphere, 2021, 281, 130957.	4.2	24
57	Physicochemical properties of arsenic-bearing lime–ferrate sludge and its leaching behaviors. Transactions of Nonferrous Metals Society of China, 2017, 27, 1188-1198.	1.7	23
58	Comparison of arsenic immobilization properties among calcium silicate hydrate, ettringite, and friedel's salt in a slagâ€based binder. Environmental Progress and Sustainable Energy, 2019, 38, S422.	1.3	23
59	Co-Co3O4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: Effects of nano-confinement and cobalt speciation. Journal of Colloid and Interface Science, 2022, 616, 389-400.	5.0	23
60	Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System. International Journal of Environmental Research and Public Health, 2019, 16, 156.	1.2	22
61	Separation and recovery of ZnS from sulfidized neutralization sludge via the hydration conversion of CaSO4 into bulk CaSO4·2H2O crystals. Separation and Purification Technology, 2015, 154, 76-81.	3.9	21
62	Sulfidation behavior of Zn and ZnS crystal growth kinetics for Zn(OH)2–S–NaOH hydrothermal system. Hydrometallurgy, 2016, 161, 166-173.	1.8	21
63	Release Behaviors of Arsenic and Heavy Metals from Arsenic Sulfide Sludge during Simulated Storage. Minerals (Basel, Switzerland), 2019, 9, 130.	0.8	21
64	Physicochemical and environmental properties of arsenic sulfide sludge from copper and leadâ`'zinc smelter. Transactions of Nonferrous Metals Society of China, 2020, 30, 1943-1955.	1.7	20
65	Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria. Chemosphere, 2008, 72, 1086-1091.	4.2	19
66	Sulfidation of heavy-metal-containing metallurgical residue in wet-milling processing. Minerals Engineering, 2013, 53, 136-143.	1.8	19
67	Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 1033-1040.	0.7	18
68	Insights into the role of extracellular polymeric substances in Zn2+ adsorption in different biological sludge systems. Environmental Science and Pollution Research, 2018, 25, 36680-36692.	2.7	17
69	Hydrothermal modification to improve the floatability of ZnS crystals. Minerals Engineering, 2013, 40, 16-23.	1.8	16
70	Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater. Journal of Soils and Sediments, 2014, 14, 1098-1106.	1.5	15
71	Highly Efficient Antimonate Removal from Water by Pyrite/Hematite Bi-Mineral: Performance and Mechanism Studies. Journal of Chemical & Engineering Data, 2019, 64, 5910-5919.	1.0	15
72	The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate. Environmental Technology (United Kingdom), 2018, 39, 1926-1936.	1.2	14

Χιλο-Βο Μιν

#	Article	IF	CITATIONS
73	Formation of arsenicâ^`copper-containing particles and their sulfation decomposition mechanism in copper smelting flue gas. Transactions of Nonferrous Metals Society of China, 2021, 31, 2153-2164.	1.7	14
74	Preparation of adhesive for bamboo plywood using concentrated papermaking black liquor directly. Central South University, 2006, 13, 53-57.	0.5	13
75	Recovery of bismuth and antimony metals from pressure-leaching slag. Rare Metals, 2012, 31, 102-106.	3.6	13
76	Separation of Zinc from High Iron-Bearing Zinc Calcines by Reductive Roasting and Leaching. Jom, 2015, 67, 1988-1996.	0.9	13
77	Microscopic insight into precipitation and adsorption of As(V) species by Fe-based materials in aqueous phase. Chemosphere, 2018, 194, 117-124.	4.2	13
78	The isothermal kinetics of zinc ferrite reduction with carbon monoxide. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2253-2260.	2.0	12
79	Stabilization of ferric arsenate sludge with mechanochemically prepared FeS2/Fe composites. Transactions of Nonferrous Metals Society of China, 2019, 29, 1983-1992.	1.7	11
80	Development and simulation of a struvite crystallization fluidized bed reactor with enhanced external recirculation for phosphorous and ammonium recovery. Science of the Total Environment, 2021, 760, 144311.	3.9	11
81	Transformation behavior of the morphology, structure and toxicity of amorphous As2S3 during hydrothermal process. Hydrometallurgy, 2021, 200, 105549.	1.8	11
82	Sulfidation roasting of zinc leaching residue with pyrite for recovery of zinc and iron. Journal of Central South University, 2020, 27, 1186-1196.	1.2	10
83	Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide. Jom, 2015, 67, 3010-3021.	0.9	9
84	Enhanced short-cut nitrification in an airlift reactor by CaCO3 attachment on biomass under high bicarbonate condition. Biodegradation, 2016, 27, 131-144.	1.5	9
85	Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. Journal of Hazardous Materials, 2021, 410, 124567.	6.5	9
86	Sulfidation Roasting of Hemimorphite with Pyrite for the Enrichment of Zn and Pb. Jom, 2016, 68, 2435-2442.	0.9	8
87	Synthesis and Hydration Characteristic of Geopolymer Based on Lead Smelting Slag. International Journal of Environmental Research and Public Health, 2020, 17, 2762.	1.2	8
88	Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate. Jom, 2015, 67, 2028-2037.	0.9	7
89	Removal of lead in wastewater by immobilized inactivated cells of Rhizopus oligosporus. Central South University, 2003, 10, 313-317.	0.5	6
90	Enhanced degradation of 1-naphthol in landfill leachate using <i>Arthrobacter</i> sp Environmental Technology (United Kingdom), 2019, 40, 835-842.	1.2	6

ΧΙΑΟ-ΒΟ ΜΙΝ

#	Article	IF	CITATIONS
91	Leaching process of selenium residue. Journal of Central South University, 2012, 19, 2440-2446.	1.2	5
92	Optimization of efficient stable reagent of alkaline thiourea solution for gold leaching. Central South University, 2003, 10, 292-296.	0.5	4
93	Formation and in-situ dissociation of particulate arsenic in the zinc-containing flue gas from nonferrous metallurgy. Separation and Purification Technology, 2021, 266, 118575.	3.9	4
94	Process and mechanism of hydrothermal stabilization for arsenic sulfide sludge containing elemental sulfur. Transactions of Nonferrous Metals Society of China, 2022, 32, 1041-1049.	1.7	4
95	Stabilization of ferric arsenate sludge with ZVI intensive corrosion and enhancement of long-term arsenic immobilization via resin encapsulation. Journal of Environmental Chemical Engineering, 2022, 10, 107392.	3.3	4
96	The effects of antimony oxide on the structure of iron phosphate glass for the immobilisation of arsenic. Glass Technology: European Journal of Glass Science and Technology Part A, 2015, 56, 196-202.	0.2	3
97	Defluorination mechanism related to the activity of hydroxyl groups: A combined density functional theory calculations and experimental study. Chemical Engineering Journal, 2022, 437, 135342.	6.6	3
98	Study on stainless steelmaking dust agglomeration. Central South University, 2004, 11, 45-50.	0.5	2
99	Erratum to "XPS and FTIR studies of sodium arsenate vitrification by cullet―[Journal of Non-Crystalline Solids 452(2016) 238–244]. Journal of Non-Crystalline Solids, 2018, 502, 254.	1.5	1
100	Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes. , 2019, , 121-195.		1
101	Copper Leaching Behavior of Iron-Oxide Hosted Copper-Gold Ore in Sulfuric Acid Medium. Materials Transactions, 2008, 49, 2611-2617.	0.4	0
102	Cover Image, Volume 92, Issue 2. Journal of Chemical Technology and Biotechnology, 2017, 92, i-i.	1.6	0
103	Frontispiece: Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, .	1.7	0