
Andrey Sosorev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent Highâ€Mobility 2D Organic Semiconductor Single Crystals. Advanced Electronic Materials, 2022, 8, .	2.6	8
2	Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Communications Biology, 2022, 5, .	2.0	5
3	Synthesis, characterization and organic field-effect transistors applications of novel tetrathienoacene derivatives. Dyes and Pigments, 2021, 185, 108911.	2.0	12
4	Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Physical Chemistry Chemical Physics, 2021, 23, 7037-7047.	1.3	7
5	Non‣ocal Electronâ€Phonon Interaction in Naphthalene Diimide Derivatives, its Experimental Probe and Impact on Chargeâ€Carrier Mobility. Advanced Electronic Materials, 2021, 7, 2001281.	2.6	16
6	Walking around Ribosomal Small Subunit: A Possible "Tourist Map―for Electron Holes. Molecules, 2021, 26, 5479.	1.7	2
7	Suppression of dynamic disorder by electrostatic interactions in structurally close organic semiconductors. Physical Chemistry Chemical Physics, 2021, 23, 15485-15491.	1.3	10
8	Unraveling the unusual effect of fluorination on crystal packing in an organic semiconductor. Physical Chemistry Chemical Physics, 2020, 22, 1665-1673.	1.3	16
9	Impact of N-substitution on structural, electronic, optical, and vibrational properties of a thiophene–phenylene co-oligomer. RSC Advances, 2020, 10, 28128-28138.	1.7	11
10	Tuning of Molecular Electrostatic Potential Enables Efficient Charge Transport in Crystalline Azaacenes: A Computational Study. International Journal of Molecular Sciences, 2020, 21, 5654.	1.8	6
11	Fluorinated Thiophene-Phenylene Co-Oligomers for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 9507-9519.	4.0	38
12	Simple charge transport model for efficient search of high-mobility organic semiconductor crystals. Materials and Design, 2020, 192, 108730.	3.3	22
13	Toward probing of the local electron–phonon interaction in small-molecule organic semiconductors with Raman spectroscopy. Journal of Chemical Physics, 2020, 153, 174303.	1.2	11
14	Impact of Lowâ€Frequency Vibrations on Charge Transport in Highâ€Mobility Organic Semiconductors. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800485.	1.2	11
15	Surface-Enhanced Raman Spectroscopy of 2D Organic Semiconductor Crystals. Journal of Physical Chemistry C, 2019, 123, 27242-27250.	1.5	7
16	Method for Fast Estimation of Lattice Distortion Energy in Organic Semiconductors. JETP Letters, 2019, 110, 193-199.	0.4	5
17	Large-Size Single-Crystal Oligothiophene-Based Monolayers for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 6315-6324.	4.0	23
18	Ground-State Geometry and Vibrations of Polyphenylenevinylene Oligomers. Journal of Physical Chemistry Letters. 2019. 10. 3232-3239.	2.1	14

#	Article	IF	CITATIONS
19	Impact of terminal substituents on the electronic, vibrational and optical properties of thiophene–phenylene co-oligomers. Physical Chemistry Chemical Physics, 2019, 21, 11578-11588.	1.3	36

The Electron-Vibrational Interaction in a Thiophene—Phenylene Cooligomer and Its Relationship to the Raman Spectrum. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0000rgBT /Overl∞t 10 Tf 50 697 Td (20

21	Hot kinetic model as a guide to improve organic photovoltaic materials. Physical Chemistry Chemical Physics, 2018, 20, 3658-3671.	1.3	15
22	Relationship between electron–phonon interaction and low-frequency Raman anisotropy in high-mobility organic semiconductors. Physical Chemistry Chemical Physics, 2018, 20, 18912-18918.	1.3	23
23	Inhibiting Low-Frequency Vibrations Explains Exceptionally High Electron Mobility in 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 2875-2880.	2.1	39
24	Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F ₂ -TCNQ). Physical Chemistry Chemical Physics, 2017, 19, 25478-25486.	1.3	28
25	Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model. Physical Chemistry Chemical Physics, 2016, 18, 4684-4696.	1.3	9
26	Chargeâ€Transfer Complexes of Conjugated Polymers. Israel Journal of Chemistry, 2014, 54, 650-673.	1.0	27
27	Intrachain Aggregation of Charge-Transfer Complexes in Conjugated Polymer:Acceptor Blends from Photoluminescence Quenching. Journal of Physical Chemistry C, 2013, 117, 6972-6978.	1.5	16
28	Neighbor Effect in Complexation of a Conjugated Polymer. Journal of Physical Chemistry B, 2013, 117, 10913-10919.	1.2	4
29	Threshold formation of an intermolecular charge transfer complex of a semiconducting polymer. JETP Letters, 2010, 91, 351-356.	0.4	4
30	Spectroscopic Assessment of Chargeâ€Carrier Mobility in Crystalline Organic Semiconductors. Advanced Electronic Materials, 0, , 2100579.	2.6	6
31	Spectroscopic Assessment of Charge Mobility in Organic Semiconductors. , 0, , .		0