
Emilio Rosales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current advances and trends in electro-Fenton process using heterogeneous catalysts – A review. Chemosphere, 2018, 201, 399-416.	4.2	270
2	Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 2017, 246, 176-192.	4.8	192
3	Decontamination of soils containing PAHs by electroremediation: A review. Journal of Hazardous Materials, 2010, 177, 1-11.	6.5	184
4	Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chemical Engineering Journal, 2009, 155, 62-67.	6.6	147
5	Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of Hazardous Materials, 2012, 213-214, 369-377.	6.5	122
6	Advances in the Electroâ€Fenton Process for Remediation of Recalcitrant Organic Compounds. Chemical Engineering and Technology, 2012, 35, 609-617.	0.9	100
7	Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 2007, 40, 1286-1290.	1.6	87
8	Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. Journal of Cleaner Production, 2019, 228, 222-230.	4.6	82
9	Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Chemical Engineering Research and Design, 2016, 101, 61-71.	2.7	71
10	Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 2012, 284, 150-156.	4.0	69
11	New uses of food waste: application to laccase production by Trametes hirsuta. Biotechnology Letters, 2002, 24, 701-704.	1.1	68
12	Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye. Environmental Science and Pollution Research, 2012, 19, 1738-1746.	2.7	68
13	Remediation of contaminated marine sediment using electrokinetic–Fenton technology. Journal of Industrial and Engineering Chemistry, 2013, 19, 932-937.	2.9	66
14	p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere, 2017, 185, 726-736.	4.2	65
15	Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. Journal of Electroanalytical Chemistry, 2017, 797, 69-77.	1.9	62
16	Exploitation of a waste from the brewing industry for laccase production by two Trametes species. Journal of Food Engineering, 2004, 64, 423-428.	2.7	52
17	Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Chemical Engineering Research and Design, 2016, 101, 19-26.	2.7	51
18	Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film. Molecules, 2011, 16, 3569-3579.	1.7	50

#	Article	IF	CITATIONS
19	Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresource Technology, 2015, 182, 41-49.	4.8	49
20	Reutilisation of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta. Journal of Food Engineering, 2005, 66, 419-423.	2.7	48
21	Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes. Science of the Total Environment, 2018, 622-623, 556-562.	3.9	46
22	Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. Applied Sciences (Switzerland), 2020, 10, 7810.	1.3	44
23	Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environmental Science and Pollution Research, 2013, 20, 2172-2183.	2.7	41
24	Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere, 2006, 62, 1558-1563.	4.2	40
25	Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Separation and Purification Technology, 2019, 208, 130-141.	3.9	40
26	Electrokinetic oxidant soil flushing: A solution for in situ remediation of hydrocarbons polluted soils. Journal of Electroanalytical Chemistry, 2017, 799, 1-8.	1.9	39
27	Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Separation and Purification Technology, 2020, 242, 116796.	3.9	38
28	Iron-doped cathodes for electro-Fenton implementation: Application for pymetrozine degradation. Electrochimica Acta, 2020, 338, 135768.	2.6	34
29	Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. Chemosphere, 2016, 156, 347-356.	4.2	33
30	Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresource Technology, 2021, 320, 124399.	4.8	33
31	Degradation of organic pollutants by heterogeneous electro-Fenton process using Mn-alginate composite. Journal of Chemical Technology and Biotechnology, 2015, 90, 1439-1447.	1.6	30
32	Assessment of LED-assisted electro-Fenton reactor for the treatment of winery wastewater. Chemical Engineering Journal, 2017, 310, 399-406.	6.6	30
33	Feasibility of Solid‣tate Fermentation Using Spent Fungi‣ubstrate in the Biodegradation of PAHs. Clean - Soil, Air, Water, 2013, 41, 610-615.	0.7	29
34	Evaluation of different cathodes and reaction parameters on the enhancement of the electro-Fenton process. Journal of Electroanalytical Chemistry, 2018, 808, 455-463.	1.9	29
35	Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst. Chemical Engineering Research and Design, 2020, 144, 100-110.	2.7	29
36	Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads. Environmental Science and Pollution Research, 2013, 20, 2252-2261.	2.7	28

#	Article	IF	CITATIONS
37	Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Chemical Engineering Research and Design, 2017, 108, 99-107.	2.7	28
38	Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination, 2011, 278, 312-317.	4.0	27
39	Hybrid Technologies for the Remediation of Diesel Fuel Polluted Soil. Chemical Engineering and Technology, 2011, 34, 2077-2082.	0.9	27
40	Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. Journal of Cleaner Production, 2020, 271, 122436.	4.6	26
41	Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by <i>Pseudomonas stutzeri</i> <scp>CECT</scp> 930 immobilized in hydrogel matrices. Journal of Chemical Technology and Biotechnology, 2015, 90, 500-506.	1.6	23
42	Electro-Fenton process for implementation of acid black liquor waste treatment. Science of the Total Environment, 2018, 635, 397-404.	3.9	23
43	Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids. Chemosphere, 2018, 199, 68-75.	4.2	23
44	Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1104-1110.	0.9	21
45	Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and Biosystems Engineering, 2012, 35, 851-855.	1.7	21
46	Highly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: Application to degradation of parabens. Chemical Engineering Research and Design, 2018, 117, 363-371.	2.7	21
47	Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. Journal of Environmental Chemical Engineering, 2022, 10, 106977.	3.3	20
48	Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. Journal of Electroanalytical Chemistry, 2021, 886, 115135.	1.9	19
49	Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater. Chemosphere, 2021, 280, 130778.	4.2	19
50	Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater. Chemical Engineering Research and Design, 2016, 101, 72-79.	2.7	18
51	Sustainable Removal of Cr(VI) by Lime Peel and Pineapple Core Wastes. Applied Sciences (Switzerland), 2019, 9, 1967.	1.3	15
52	Environmental application of monolithic carbonaceous aerogels for the removal of emerging pollutants. Chemosphere, 2020, 248, 125995.	4.2	14
53	Electroanalytical techniques applied to monitoring the electro-Fenton degradation of aromatic imidazolium-based ionic liquids. Journal of Applied Electrochemistry, 2018, 48, 1331-1341.	1.5	12
54	Solid-State Fermentation for Food Applications. , 2018, , 319-355.		10

#	Article	IF	CITATIONS
55	Prospects on integrated electrokinetic systems for decontamination of soil polluted with organic contaminants. Current Opinion in Electrochemistry, 2021, 27, 100692.	2.5	10
56	Electro-osmotic transport of nano zero-valent iron in Boom Clay. Electrochimica Acta, 2014, 127, 27-33.	2.6	9
57	Green zero-valent iron nanoparticles synthesized using herbal extracts for degradation of dyes from wastewater. , 0, 92, 159-167.		7
58	Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water. Applied Sciences (Switzerland), 2021, 11, 12103.	1.3	7
59	Scale-up of removal process using a remediating-bacterium isolated from marine coastal sediment. RSC Advances, 2015, 5, 36665-36672.	1.7	5
60	Towards sustainable removal of methylthioninium chloride by using adsorption-electroradical regeneration. Chemosphere, 2018, 210, 476-485.	4.2	5
61	Pre-concentration by natural adsorbent as plausible tool for effective electro-Fenton removal of micropollutants. Separation and Purification Technology, 2020, 241, 116676.	3.9	4
62	Performance of Electro-Fenton Water Treatment Technology in Decreasing Zebrafish Embryotoxicity Elicited by a Mixture of Organic Contaminants. Advances in Science, Technology and Innovation, 2020, , 243-246.	0.2	0
63	Fluoxetine and Pirimicarb Abatement by Ecofriendly Electro-Fenton Process. Advances in Science, Technology and Innovation, 2020, , 117-120.	0.2	0