Melanie S Sanford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robert H. Grubbs (1942–2021). Science, 2022, 375, 499-499.	6.0	Ο
2	A Nonaqueous Redoxâ€Matched Flow Battery with Charge Storage in Insoluble Polymer Beads**. Chemistry - A European Journal, 2022, 28, e202200149.	1.7	7
3	Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries. , 2022, 4, 733-739.		15
4	Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. Journal of the American Chemical Society, 2022, 144, 7422-7429.	6.6	11
5	Palladiumâ€Mediated C _γ â^'H Functionalization of Alicyclic Amines. Angewandte Chemie - International Edition, 2021, 60, 11227-11230.	7.2	18
6	Palladiumâ€Mediated C γ â^'H Functionalization of Alicyclic Amines. Angewandte Chemie, 2021, 133, 11327-11330.	1.6	0
7	Sequential Ir/Cu-Mediated Method for the <i>Meta</i> -Selective C–H Radiofluorination of (Hetero)Arenes. Journal of the American Chemical Society, 2021, 143, 6915-6921.	6.6	18
8	Tetramethylammonium Fluoride Alcohol Adducts for S _N Ar Fluorination. Organic Letters, 2021, 23, 4493-4498.	2.4	18
9	Comparative Study of Organic Radical Cation Stability and Coulombic Efficiency for Nonaqueous Redox Flow Battery Applications. Journal of Physical Chemistry C, 2021, 125, 14170-14179.	1.5	14
10	S _N Ar and C–H Amination of Electron Rich Arenes with Pyridine as a Nucleophile Using Photoredox Catalysis. Organic Letters, 2021, 23, 5213-5217.	2.4	14
11	Isolable Pyridinium Trifluoromethoxide Salt for Nucleophilic Trifluoromethoxylation. Organic Letters, 2021, 23, 5138-5142.	2.4	20
12	Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society, 2021, 143, 13450-13459.	6.6	29
13	S _N Ar Radiofluorination with In Situ Generated [¹⁸ F]Tetramethylammonium Fluoride. Journal of Organic Chemistry, 2021, 86, 14121-14130.	1.7	9
14	Development of High Energy Density Diaminocyclopropeniumâ€Phenothiazine Hybrid Catholytes for Nonâ€Aqueous Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 27039-27045.	7.2	23
15	Development of High Energy Density Diaminocyclopropeniumâ€Phenothiazine Hybrid Catholytes for Nonâ€Aqueous Redox Flow Batteries. Angewandte Chemie, 2021, 133, 27245-27251.	1.6	4
16	Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis. Journal of the American Chemical Society, 2021, 143, 18617-18625.	6.6	25
17	Deoxyfluorination of (Hetero)aryl Aldehydes Using Tetramethylammonium Fluoride and Perfluorobutanesulfonyl Fluoride or Trifluoromethanesulfonic Anhydride. Israel Journal of Chemistry, 2020, 60, 398-401.	1.0	7
18	Oxidatively Induced Aryl–CF ₃ Coupling at Diphosphine Nickel Complexes. Organometallics, 2020, 39, 3-7.	1.1	11

#	Article	IF	CITATIONS
19	Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Journal of the American Chemical Society, 2020, 142, 17564-17571.	6.6	37
20	A spot test for determination of residual TBA levels in ¹⁸ F-radiotracers for human use using Dragendorff reagent. Analytical Methods, 2020, 12, 5004-5009.	1.3	8
21	Nickel-Catalyzed Decarbonylative Synthesis of Fluoroalkyl Thioethers. ACS Catalysis, 2020, 10, 8315-8320.	5.5	46
22	Development of S _N Ar Nucleophilic Fluorination: A Fruitful Academia-Industry Collaboration. Accounts of Chemical Research, 2020, 53, 2372-2383.	7.6	43
23	Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging. Clinical and Translational Imaging, 2020, 8, 167-206.	1.1	44
24	Equity and Inclusion in the Chemical Sciences Requires Actions not Just Words. ACS Central Science, 2020, 6, 1010-1011.	5.3	69
25	Equity and Inclusion in the Chemical Sciences Requires Actions not Just Words. Journal of the American Chemical Society, 2020, 142, 11317-11318.	6.6	40
26	Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters. Journal of the American Chemical Society, 2020, 142, 5918-5923.	6.6	50
27	C–H Amination of Arenes with Hydroxylamine. Organic Letters, 2020, 22, 2931-2934.	2.4	32
28	Celebrating Women in Organic Chemistry. Journal of Organic Chemistry, 2020, 85, 1769-1772.	1.7	10
29	Celebrating Women in Organic Chemistry. Organic Letters, 2020, 22, 1227-1230.	2.4	3
30	Celebrating Women in Organic Chemistry. Journal of the American Chemical Society, 2020, 142, 3277-3280.	6.6	5
31	Realization of an Asymmetric Nonâ€Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Chemistry - A European Journal, 2020, 26, 5369-5373.	1.7	46
32	NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. Journal of the American Chemical Society, 2020, 142, 7362-7367.	6.6	33
33	Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nature Protocols, 2020, 15, 1742-1759.	5.5	26
34	Celebrating Women in Organic Chemistry. Organic Process Research and Development, 2020, 24, 111-114.	1.3	2
35	Aryl–Fluoride Bond-Forming Reductive Elimination from Nickel(IV) Centers. Journal of the American Chemical Society, 2019, 141, 13261-13267.	6.6	37
36	Synthesis of [18F]-Î ³ -Fluoro-α,Î ² -unsaturated Esters and Ketones via Vinylogous 18F-Fluorination of α-Diazoacetates with [18F]AgF. Synthesis, 2019, 51, 4401-4407.	1.2	10

#	Article	IF	CITATIONS
37	Nickel(IV)-Catalyzed C–H Trifluoromethylation of (Hetero)arenes. Journal of the American Chemical Society, 2019, 141, 12872-12879.	6.6	82
38	Mechanism and Scope of Nickel-Catalyzed Decarbonylative Borylation of Carboxylic Acid Fluorides. Journal of the American Chemical Society, 2019, 141, 17322-17330.	6.6	94
39	Catalytically Relevant Intermediates in the Ni-Catalyzed C(sp ²)–H and C(sp ³)–H Functionalization of Aminoquinoline Substrates. Journal of the American Chemical Society, 2019, 141, 17382-17387.	6.6	34
40	An organic super-electron-donor as a high energy density negative electrolyte for nonaqueous flow batteries. Chemical Communications, 2019, 55, 11037-11040.	2.2	31
41	Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Journal of the American Chemical Society, 2019, 141, 15301-15306.	6.6	101
42	One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Organic and Biomolecular Chemistry, 2019, 17, 8701-8705.	1.5	37
43	Access to 3D Alicyclic Amine-Containing Fragments through Transannular C–H Arylation. Synlett, 2019, 30, 417-422.	1.0	17
44	Connecting Organometallic Ni(III) and Ni(IV): Reactions of Carbon-Centered Radicals with High-Valent Organonickel Complexes. Journal of the American Chemical Society, 2019, 141, 8914-8920.	6.6	49
45	Impact of Oxidation State on Reactivity and Selectivity Differences between Nickel(III) and Nickel(IV) Alkyl Complexes. Angewandte Chemie, 2019, 131, 9202-9206.	1.6	4
46	Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes. Journal of the American Chemical Society, 2019, 141, 10171-10176.	6.6	63
47	Impact of Oxidation State on Reactivity and Selectivity Differences between Nickel(III) and Nickel(IV) Alkyl Complexes. Angewandte Chemie - International Edition, 2019, 58, 9104-9108.	7.2	22
48	Ring opening of epoxides with [¹⁸ F]FeF species to produce [¹⁸ F]fluorohydrin PET imaging agents. Chemical Communications, 2019, 55, 6361-6364.	2.2	11
49	C–H ¹⁸ F-fluorination of 8-methylquinolines with Ag[¹⁸ F]F. Chemical Communications, 2019, 55, 2976-2979.	2.2	20
50	Room Temperature Deoxyfluorination of Benzaldehydes and α-Ketoesters with Sulfuryl Fluoride and Tetramethylammonium Fluoride. Organic Letters, 2019, 21, 1350-1353.	2.4	39
51	Palladium-Catalyzed Difluoromethylation of Aryl Chlorides and Bromides with TMSCF ₂ H. Journal of Organic Chemistry, 2019, 84, 3735-3740.	1.7	37
52	Nickel(II/IV) Manifold Enables Room-Temperature C(sp ³)–H Functionalization. Journal of the American Chemical Society, 2019, 141, 19513-19520.	6.6	25
53	Copperâ€Mediated Aminoquinolineâ€Directed Radiofluorination of Aromatic Câ^'H Bonds with K ¹⁸ F. Angewandte Chemie - International Edition, 2019, 58, 3119-3122.	7.2	40
54	Aryl–CF ₃ Coupling from Phosphinoferrocene-Ligated Palladium(II) Complexes. Organometallics, 2019, 38, 519-526.	1.1	29

#	Article	IF	CITATIONS
55	Copperâ€Mediated Aminoquinolineâ€Directed Radiofluorination of Aromatic Câ^'H Bonds with K 18 F. Angewandte Chemie, 2019, 131, 3151-3154.	1.6	9
56	Model Complexes for the Palladium-Catalyzed Transannular C–H Functionalization of Alicyclic Amines. Organometallics, 2019, 38, 138-142.	1.1	15
57	Copper(II)-Mediated [¹¹ C]Cyanation of Arylboronic Acids and Arylstannanes. Organic Letters, 2018, 20, 1530-1533.	2.4	35
58	Second-Generation Palladium Catalyst System for Transannular C–H Functionalization of Azabicycloalkanes. Journal of the American Chemical Society, 2018, 140, 5599-5606.	6.6	70
59	High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Central Science, 2018, 4, 189-196.	5.3	134
60	Palladium-Catalyzed C–H Bond Acetoxylation via Electrochemical Oxidation. Organic Letters, 2018, 20, 204-207.	2.4	142
61	Palladium- and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers. Organic Letters, 2018, 20, 44-47.	2.4	113
62	Automated synthesis of PET radiotracers by copperâ€mediated ¹⁸ Fâ€fluorination of organoborons: Importance of the order of addition and competing protodeborylation. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 228-236.	0.5	36
63	Radiosynthesis of [¹¹ C]LY2795050 for Preclinical and Clinical PET Imaging Using Cu(II)-Mediated Cyanation. ACS Medicinal Chemistry Letters, 2018, 9, 1274-1279.	1.3	12
64	Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature, 2018, 563, 100-104.	13.7	207
65	Improved Synthesis of [Cp ^R RhCl ₂] ₂ Complexes. Organometallics, 2018, 37, 3240-3242.	1.1	21
66	Reactions of Arylsulfonate Electrophiles with NMe ₄ F: Mechanistic Insight, Reactivity, and Scope. Journal of Organic Chemistry, 2018, 83, 11178-11190.	1.7	31
67	CONTROLLING SELECTIVITY AND REACTIVITY IN CATALYTIC C–H FUNCTIONALIZATION REACTIONS. , 2018, , .		0
68	Role of Silver Salts in Palladium-Catalyzed Arene and Heteroarene C–H Functionalization Reactions. Organometallics, 2017, 36, 165-171.	1.1	151
69	Nucleophilic Deoxyfluorination of Phenols via Aryl Fluorosulfonate Intermediates. Journal of the American Chemical Society, 2017, 139, 1452-1455.	6.6	174
70	Remote C(sp ³)–H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575.	2.4	63
71	Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. Journal of the American Chemical Society, 2017, 139, 2924-2927.	6.6	165
72	Computational study of C(sp ³)–O bond formation at a Pd ^{IV} centre. Dalton Transactions, 2017, 46, 3742-3748.	1.6	25

#	Article	IF	CITATIONS
73	Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination. Scientific Reports, 2017, 7, 233.	1.6	51
74	Oxidatively Induced C–H Activation at High Valent Nickel. Journal of the American Chemical Society, 2017, 139, 6058-6061.	6.6	62
75	Multiple Approaches to the In Situ Generation of Anhydrous Tetraalkylammonium Fluoride Salts for S _N Ar Fluorination Reactions. Journal of Organic Chemistry, 2017, 82, 5020-5026.	1.7	49
76	Synthesis, Reactivity, and Catalytic Applications of Isolable (NHC)Cu(CHF ₂) Complexes. Organometallics, 2017, 36, 1220-1223.	1.1	68
77	An Organometalllic Ni ^{IV} Complex That Participates in Competing Transmetalation and C(sp ²)–O Bond-Forming Reductive Elimination Reactions. Organometallics, 2017, 36, 247-250.	1.1	36
78	Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries. Journal of Physical Chemistry C, 2017, 121, 24376-24380.	1.5	44
79	Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes. Organometallics, 2017, 36, 4382-4393.	1.1	55
80	Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters, 2017, 2, 2430-2435.	8.8	72
81	Pd-Catalyzed Decarbonylative Cross-Couplings of Aroyl Chlorides. Organic Letters, 2017, 19, 4142-4145.	2.4	80
82	Stoichiometric and Catalytic Aryl–Perfluoroalkyl Coupling at Tri- <i>tert</i> -butylphosphine Palladium(II) Complexes. Journal of the American Chemical Society, 2017, 139, 11662-11665.	6.6	59
83	Cu-Mediated C–H ¹⁸ F-Fluorination of Electron-Rich (Hetero)arenes. Organic Letters, 2017, 19, 3939-3942.	2.4	87
84	Cyclopropenium Salts as Cyclable, Highâ€Potential Catholytes in Nonaqueous Media. Advanced Energy Materials, 2017, 7, 1602027.	10.2	94
85	Carbon–Carbon Bond-Forming Reductive Elimination from Isolated Nickel(III) Complexes. Journal of the American Chemical Society, 2016, 138, 16105-16111.	6.6	113
86	Base-Free Iridium-Catalyzed Hydrogenation of Esters and Lactones. ACS Catalysis, 2016, 6, 3113-3117.	5.5	42
87	Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 2016, 6, 3569-3574.	5.5	65
88	Experimental and Computational Assessment of Reactivity and Mechanism in C(sp ³)–N Bond-Forming Reductive Elimination from Palladium(IV). Journal of the American Chemical Society, 2016, 138, 6049-6060.	6.6	79
89	Copper-Mediated Radiofluorination of Arylstannanes with [¹⁸ F]KF. Organic Letters, 2016, 18, 5440-5443.	2.4	151
90	Copper-Mediated Functionalization of Aryl Trifluoroborates. Synlett, 2016, 27, 2279-2284.	1.0	13

6

#	Article	IF	CITATIONS
91	Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines. ACS Catalysis, 2016, 6, 6377-6383.	5.5	121
92	Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C–H Sites. Organic Letters, 2016, 18, 4258-4261.	2.4	49
93	Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. Journal of the American Chemical Society, 2016, 138, 15378-15384.	6.6	99
94	Moving Metal-Mediated ¹⁸ F-Fluorination from Concept to Clinic. ACS Central Science, 2016, 2, 128-130.	5.3	44
95	Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science, 2016, 351, 1421-1424.	6.0	170
96	Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature, 2016, 531, 220-224.	13.7	287
97	Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries. Journal of Physical Chemistry C, 2015, 119, 15882-15889.	1.5	74
98	Anhydrous Tetramethylammonium Fluoride for Room-Temperature S _N Ar Fluorination. Journal of Organic Chemistry, 2015, 80, 12137-12145.	1.7	62
99	Synthesis of [¹⁸ F]Arenes via the Copper-Mediated [¹⁸ F]Fluorination of Boronic Acids. Organic Letters, 2015, 17, 5780-5783.	2.4	199
100	Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science, 2015, 347, 1218-1220.	6.0	248
101	Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO ₂ to Methanol. Journal of the American Chemical Society, 2015, 137, 1028-1031.	6.6	375
102	Mechanism of the Palladium-Catalyzed Arene C–H Acetoxylation: A Comparison of Catalysts and Ligand Effects. Journal of the American Chemical Society, 2015, 137, 3109-3118.	6.6	138
103	Oxidation of Ni(II) to Ni(IV) with Aryl Electrophiles Enables Ni-Mediated Aryl–CF ₃ Coupling. Journal of the American Chemical Society, 2015, 137, 8034-8037.	6.6	126
104	Computational Study of Intramolecular Arene Palladation at a Palladium(IV) Center. Organometallics, 2015, 34, 1085-1090.	1.1	23
105	Acyl Azolium Fluorides for Room Temperature Nucleophilic Aromatic Fluorination of Chloro- and Nitroarenes. Organic Letters, 2015, 17, 1866-1869.	2.4	83
106	Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry. Inorganic Chemistry, 2015, 54, 10214-10223.	1.9	56
107	Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. Journal of the American Chemical Society, 2015, 137, 14465-14472.	6.6	191
108	Platinum-Catalyzed, Terminal-Selective C(sp ³)–H Oxidation of Aliphatic Amines. Journal of the American Chemical Society, 2015, 137, 12796-12799.	6.6	128

#	Article	IF	CITATIONS
109	Carbon–hydrogen (C–H) bond activation at Pd ^{IV} : a Frontier in C–H functionalization catalysis. Chemical Science, 2015, 6, 70-76.	3.7	285
110	Competition between sp ³ -C–N vs sp ³ -C–F Reductive Elimination from Pd ^{IV} Complexes. Journal of the American Chemical Society, 2014, 136, 4097-4100.	6.6	92
111	Mild Fluorination of Chloropyridines with in Situ Generated Anhydrous Tetrabutylammonium Fluoride. Journal of Organic Chemistry, 2014, 79, 5827-5833.	1.7	43
112	Mechanistic Investigations of Cu-Catalyzed Fluorination of Diaryliodonium Salts: Elaborating the Cu ^I /Cu ^{III} Manifold in Copper Catalysis. Organometallics, 2014, 33, 5525-5534.	1.1	60
113	Developing Efficient Nucleophilic Fluorination Methods and Application to Substituted Picolinate Esters. Organic Process Research and Development, 2014, 18, 1045-1054.	1.3	16
114	Late-stage [¹⁸ F]fluorination: new solutions to old problems. Chemical Science, 2014, 5, 4545-4553.	3.7	266
115	Copper-Catalyzed [¹⁸ F]Fluorination of (Mesityl)(aryl)iodonium Salts. Organic Letters, 2014, 16, 3224-3227.	2.4	197
116	Synthesis of Fluoroalkyl Palladium and Nickel Complexes via Decarbonylation of Acylmetal Species. Organometallics, 2014, 33, 3831-3839.	1.1	37
117	C(sp ³)–O Bond-Forming Reductive Elimination from Pd ^{IV} with Diverse Oxygen Nucleophiles. Journal of the American Chemical Society, 2014, 136, 12771-12775.	6.6	94
118	Formation of Ethane from Mono-Methyl Palladium(II) Complexes. Journal of the American Chemical Society, 2014, 136, 8237-8242.	6.6	35
119	<i>N</i> -Acyloxyphthalimides as Nitrogen Radical Precursors in the Visible Light Photocatalyzed Room Temperature C–H Amination of Arenes and Heteroarenes. Journal of the American Chemical Society, 2014, 136, 5607-5610.	6.6	346
120	Catalytic Cycle for Palladium-Catalyzed Decarbonylative Trifluoromethylation using Trifluoroacetic Esters as the CF3 Source. Organometallics, 2014, 33, 2653-2660.	1.1	39
121	Transition-Metal-Free Acid-Mediated Synthesis of Aryl Sulfides from Thiols and Thioethers. Journal of Organic Chemistry, 2014, 79, 2263-2267.	1.7	60
122	Heterogenization of Homogeneous Catalysts in Metal–Organic Frameworks via Cation Exchange. Journal of the American Chemical Society, 2013, 135, 10586-10589.	6.6	277
123	Reversible carbon–carbon bond formation between carbonyl compounds and a ruthenium pincer complex. Chemical Communications, 2013, 49, 7147.	2.2	49
124	Effect of Solvent and Ancillary Ligands on the Catalytic H/D Exchange Reactivity of Cp*lr ^{III} (L) Complexes. ACS Catalysis, 2013, 3, 2304-2310.	5.5	42
125	Platinum-Catalyzed C–H Arylation of Simple Arenes. Journal of the American Chemical Society, 2013, 135, 15710-15713.	6.6	117
126	Catalytic CO ₂ Hydrogenation to Formate by a Ruthenium Pincer Complex. ACS Catalysis, 2013, 3, 2412-2416.	5.5	205

#	Article	IF	CITATIONS
127	Cu(OTf) ₂ -Mediated Fluorination of Aryltrifluoroborates with Potassium Fluoride. Journal of the American Chemical Society, 2013, 135, 16292-16295.	6.6	187
128	Steric Control of Site Selectivity in the Pd-Catalyzed C–H Acetoxylation of Simple Arenes. Organic Letters, 2013, 15, 5428-5431.	2.4	75
129	Cu-Catalyzed Fluorination of Diaryliodonium Salts with KF. Organic Letters, 2013, 15, 5134-5137.	2.4	162
130	Mechanism of Pd-Catalyzed Ar–Ar Bond Formation Involving Ligand-Directed C–H Arylation and Diaryliodonium Oxidants: Computational Studies of Orthopalladation at Binuclear Pd(II) Centers, Oxidation To Form Binuclear Palladium(III) Species, and Ar··Ar Reductive Coupling. Organometallics, 2013, 32, 544-555.	1,1	52
131	Palladium Catalysts Containing Pyridinium-Substituted Pyridine Ligands for the C–H Oxygenation of Benzene with K ₂ S ₂ O ₈ . ACS Catalysis, 2013, 3, 700-703.	5.5	59
132	Mild Copper-Mediated Fluorination of Aryl Stannanes and Aryl Trifluoroborates. Journal of the American Chemical Society, 2013, 135, 4648-4651.	6.6	155
133	Mild Palladium-Catalyzed C–H Alkylation Using Potassium Alkyltrifluoroborates in Combination with MnF ₃ . Organic Letters, 2013, 15, 2302-2305.	2.4	157
134	A Detailed Study of Acetate-Assisted C–H Activation at Palladium(IV) Centers. Journal of the American Chemical Society, 2013, 135, 6618-6625.	6.6	115
135	On the role of anionic ligands in the site-selectivity of oxidative C–H functionalization reactions of arenes. Chemical Science, 2013, 4, 2767.	3.7	84
136	Palladium-catalyzed C–H arylation using aryltrifluoroborates inÂconjunction with a MnIII oxidant under mild conditions. Tetrahedron, 2013, 69, 5580-5587.	1.0	14
137	Asymmetric Chiral Ligand-Directed Alkene Dioxygenation. Organic Letters, 2013, 15, 46-49.	2.4	57
138	Investigations into Transition-Metal-Catalyzed Arene Trifluoromethylation Reactions. Synlett, 2012, 23, 2005-2013.	1.0	71
139	Combining Transition Metal Catalysis with Radical Chemistry: Dramatic Acceleration of Palladiumâ€Catalyzed CH Arylation with Diaryliodonium Salts. Advanced Synthesis and Catalysis, 2012, 354, 3517-3522.	2.1	187
140	Structure Activity Relationship Study of Diimine Pt ^{II} Catalysts for H/D Exchange. Organometallics, 2012, 31, 1761-1766.	1.1	20
141	Pd-Catalyzed C–H Fluorination with Nucleophilic Fluoride. Organic Letters, 2012, 14, 4094-4097.	2.4	190
142	Practical Method for the Cu-Mediated Trifluoromethylation of Arylboronic Acids with CF ₃ Radicals Derived from NaSO ₂ CF ₃ and <i>tert</i> Butyl Hydroperoxide (TBHP). Organic Letters, 2012, 14, 4979-4981.	2.4	202
143	Nitrate as a redox co-catalyst for the aerobic Pd-catalyzed oxidation of unactivated sp3-C–H bonds. Chemical Science, 2012, 3, 3192.	3.7	156
144	Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage. Journal of the American Chemical Society, 2012, 134, 12002-12009.	6.6	148

#	Article	IF	CITATIONS
145	Role of a Noninnocent Pincer Ligand in the Activation of CO ₂ at (PNN)Ru(H)(CO). Organometallics, 2012, 31, 4643-4645.	1.1	106
146	Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in the Copper-Catalyzed Trifluoromethylation of Boronic Acids with CF ₃ 1. Journal of the American Chemical Society, 2012, 134, 9034-9037.	6.6	624
147	High-valent organometallic copper and palladium in catalysis. Nature, 2012, 484, 177-185.	13.7	740
148	Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization. Accounts of Chemical Research, 2012, 45, 936-946.	7.6	1,257
149	Pyridine Ligands as Promoters in Pd ^{II/0} -Catalyzed C–H Olefination Reactions. Organic Letters, 2012, 14, 1760-1763.	2.4	159
150	Carbon(sp ³)Fluorine Bondâ€Forming Reductive Elimination from Palladium(IV) Complexes. Angewandte Chemie - International Edition, 2012, 51, 3414-3417.	7.2	139
151	Rh(III) Pyridinium Substituted Bipyridine Complexes as Catalysts for Arene H/D Exchange. Topics in Catalysis, 2012, 55, 565-570.	1.3	12
152	Catalyst Control of Site Selectivity in the Pd ^{II/IV} -Catalyzed Direct Arylation of Naphthalene. ACS Catalysis, 2011, 1, 170-174.	5.5	143
153	Palladium-Catalyzed 1,1-Aryloxygenation of Terminal Olefins. Organic Letters, 2011, 13, 1076-1079.	2.4	62
154	Silver-Mediated Trifluoromethylation of Arenes Using TMSCF ₃ . Organic Letters, 2011, 13, 5464-5467.	2.4	282
155	C–H Bond Activation at Palladium(IV) Centers. Journal of the American Chemical Society, 2011, 133, 18022-18025.	6.6	127
156	Room-Temperature C–H Arylation: Merger of Pd-Catalyzed C–H Functionalization and Visible-Light Photocatalysis. Journal of the American Chemical Society, 2011, 133, 18566-18569.	6.6	597
157	Palladium-Catalyzed Câ^'H Arylation of 2,5-Substituted Pyrroles. Organic Letters, 2011, 13, 288-291.	2.4	94
158	Modulating Sterics in Trimethylplatinum(IV) Diimine Complexes To Achieve C–C Bond-Forming Reductive Elimination. Organometallics, 2011, 30, 3704-3707.	1.1	34
159	Carbon–Heteroatom Bond-Forming Reductive Elimination from Palladium(IV) Complexes. Topics in Organometallic Chemistry, 2011, , 61-84.	0.7	74
160	Cascade Catalysis for the Homogeneous Hydrogenation of CO ₂ to Methanol. Journal of the American Chemical Society, 2011, 133, 18122-18125.	6.6	528
161	Participation of Carbonyl Oxygen in Carbon–Carboxylate Bond-Forming Reductive Elimination from Palladium. Organometallics, 2011, 30, 6143-6149.	1.1	44
162	Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 2011, 133, 20138-20141.	6.6	166

#	Article	IF	CITATIONS
163	Mechanistic and Computational Studies of Oxidatively-Induced Arylâ^'CF ₃ Bond-Formation at Pd: Rational Design of Room Temperature Aryl Trifluoromethylation. Journal of the American Chemical Society, 2011, 133, 7577-7584.	6.6	192
164	Facial Tridentate Ligands for Stabilizing Palladium(IV) Complexes. Organometallics, 2011, 30, 6617-6627.	1.1	31
165	Controlling Site Selectivity in Pd-Catalyzed Oxidative Cross-Coupling Reactions. Journal of the American Chemical Society, 2011, 133, 4455-4464.	6.6	160
166	Palladium-Catalyzed C–H Perfluoroalkylation of Arenes. Organic Letters, 2011, 13, 2548-2551.	2.4	130
167	Aerobic Pd-Catalyzed sp ³ Câ^'H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes. Journal of the American Chemical Society, 2011, 133, 6541-6544.	6.6	232
168	Rücktitelbild: Remarkably High Reactivity of Pd(OAc)2/Pyridine Catalysts: Nondirected Cï£;H Oxygenation of Arenes (Angew. Chem. 40/2011). Angewandte Chemie, 2011, 123, 9680-9680.	1.6	2
169	Remarkably High Reactivity of Pd(OAc) ₂ /Pyridine Catalysts: Nondirected Cī£¿H Oxygenation of Arenes. Angewandte Chemie - International Edition, 2011, 50, 9409-9412.	7.2	162
170	Back Cover: Remarkably High Reactivity of Pd(OAc)2/Pyridine Catalysts: Nondirected CH Oxygenation of Arenes (Angew. Chem. Int. Ed. 40/2011). Angewandte Chemie - International Edition, 2011, 50, 9508-9508.	7.2	1
171	Palladium-Catalyzed Ligand-Directed Oxidative Functionalization of Cyclopropanes. Synthesis, 2011, 2011, 2579-2589.	1.2	15
172	Arylâ^'CF ₃ Bond-Forming Reductive Elimination from Palladium(IV). Journal of the American Chemical Society, 2010, 132, 2878-2879.	6.6	290
173	Palladium-Catalyzed Ligand-Directed Câ^'H Functionalization Reactions. Chemical Reviews, 2010, 110, 1147-1169.	23.0	5,643
174	Platinum and Palladium Complexes Containing Cationic Ligands as Catalysts for Arene H/D Exchange and Oxidation. Angewandte Chemie - International Edition, 2010, 49, 5884-5886.	7.2	104
175	Synthesis and reactivity of palladium(II) fluoride complexes containing nitrogen-donor ligands. Dalton Transactions, 2010, 39, 632-640.	1.6	48
176	Palladium-Catalyzed Oxidative Arylhalogenation of Alkenes: Synthetic Scope and Mechanistic Insights. Journal of the American Chemical Society, 2010, 132, 8419-8427.	6.6	99
177	Oxidation of a Cyclometalated Pd(II) Dimer with "CF ₃ ⁺ †Formation and Reactivity of a Catalytically Competent Monomeric Pd(IV) Aquo Complex. Journal of the American Chemical Society, 2010, 132, 14682-14687.	6.6	225
178	Computational and Experimental Studies of Methyl Group Exchange between Palladium(II) Centers. Organometallics, 2010, 29, 1522-1525.	1.1	25
179	Synthesis and Reactivity of Ni ^{II} (Phpy) ₂ (Phpy = 2-Phenylpyridine). Organometallics, 2010, 29, 5446-5449.	1.1	51
180	<i>O</i> -Acetyl Oximes as Transformable Directing Groups for Pd-Catalyzed Câ^'H Bond Functionalization. Organic Letters, 2010, 12, 532-535.	2.4	180

#	Article	IF	CITATIONS
181	Platinum(II) Complexes Containing Quaternized Nitrogen Ligands: Synthesis, Stability, and Evaluation as Catalysts for Methane and Benzene H/D Exchange. Organometallics, 2010, 29, 257-262.	1.1	22
182	Palladium (II/IV) catalyzed cyclopropanation reactions: scope and mechanism. Tetrahedron, 2009, 65, 3211-3221.	1.0	58
183	Synthetic and Mechanistic Studies of Pd-Catalyzed Câ^'H Arylation with Diaryliodonium Salts: Evidence for a Bimetallic High Oxidation State Pd Intermediate. Journal of the American Chemical Society, 2009, 131, 11234-11241.	6.6	492
184	Mechanistic Comparison between Pd-Catalyzed Ligand-Directed Câ^'H Chlorination and Câ^'H Acetoxylation. Organic Letters, 2009, 11, 4584-4587.	2.4	115
185	Chelating N-Heterocyclic Carbene Alkoxide as a Supporting Ligand for Pd ^{II/IV} Câ^'H Bond Functionalization Catalysis. Journal of the American Chemical Society, 2009, 131, 13912-13913.	6.6	162
186	Quantitative Assay for the Direct Comparison of Platinum Catalysts in Benzene H/D Exchange. Organometallics, 2009, 28, 5316-5322.	1.1	48
187	Oxidatively Induced Reductive Elimination from (^{<i>t</i>} Bu ₂ bpy)Pd(Me) ₂ : Palladium(IV) Intermediates in a One-Electron Oxidation Reaction. Journal of the American Chemical Society, 2009, 131, 15618-15620.	6.6	128
188	Detailed Study of Câ^'O and Câ^'C Bond-Forming Reductive Elimination from Stable C ₂ N ₂ O ₂ â^'Ligated Palladium(IV) Complexes. Journal of the American Chemical Society, 2009, 131, 10974-10983.	6.6	333
189	Synthesis and Reactivity of a Mono-σ-Aryl Palladium(IV) Fluoride Complex. Journal of the American Chemical Society, 2009, 131, 3796-3797.	6.6	276
190	Mechanism of Benzoquinone-Promoted Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Journal of the American Chemical Society, 2009, 131, 9651-9653.	6.6	226
191	Oxidatively Induced Carbonâ `Halogen Bond-Forming Reactions at Nickel. Organometallics, 2009, 28, 6142-6144.	1.1	84
192	Oxidatively Intercepting Heck Intermediates:  Pd-Catalyzed 1,2- and 1,1-Arylhalogenation of Alkenes. Journal of the American Chemical Society, 2008, 130, 2150-2151.	6.6	158
193	Reactions of Platinum(II) Complexes with Chloride-Based Oxidants: Routes to Pt(III) and Pt(IV) Products. Organometallics, 2008, 27, 1683-1689.	1.1	67
194	Insights into Directing Group Ability in Palladium-Catalyzed Câ^'H Bond Functionalization. Journal of the American Chemical Society, 2008, 130, 13285-13293.	6.6	328
195	Chelate-Directed Oxidative Functionalization of Carbon–Hydrogen Bonds: Synthetic Applications and Mechanistic Insights. Topics in Organometallic Chemistry, 2007, , 85-116.	0.7	61
196	Carbonâ^'Nitrogen Bond-Forming Reactions of Palladacycles with Hypervalent Iodine Reagents. Organometallics, 2007, 26, 1365-1370.	1.1	124
197	Synthesis of Cyclopropanes via Pd(II/IV)-Catalyzed Reactions of Enynes. Journal of the American Chemical Society, 2007, 129, 5836-5837.	6.6	194
198	Reactions of Hypervalent Iodine Reagents with Palladium:Â Mechanisms and Applications in Organic Synthesis. Inorganic Chemistry, 2007, 46, 1924-1935.	1.9	348

#	Article	IF	CITATIONS
199	Reactivity of Pd(II) Complexes with Electrophilic Chlorinating Reagents:  Isolation of Pd(IV) Products and Observation of Câ''Cl Bond-Forming Reductive Elimination. Journal of the American Chemical Society, 2007, 129, 15142-15143.	6.6	342
200	Construction of Tetrahydrofurans by PdII/PdIV-Catalyzed Aminooxygenation of Alkenes. Angewandte Chemie - International Edition, 2007, 46, 5737-5740.	7.2	288
201	Catalytic and Highly Regioselective Cross-Coupling of Aromatic Câ^'H Substrates. Journal of the American Chemical Society, 2007, 129, 11904-11905.	6.6	558
202	Mechanistic studies of an unusual epoxide-forming elimination of a β-hydroxyalkyl rhodium porphyrin. Chemical Communications, 2006, , 549-551.	2.2	14
203	Oxone as an Inexpensive, Safe, and Environmentally Benign Oxidant for Câ^'H Bond Oxygenation. Organic Letters, 2006, 8, 1141-1144.	2.4	398
204	Application of recyclable, polymer-immobilized iodine(III) oxidants in catalytic C–H bond functionalization. Journal of Molecular Catalysis A, 2006, 251, 108-113.	4.8	63
205	Transition metal catalyzed oxidative functionalization of carbon–hydrogen bonds. Tetrahedron, 2006, 62, 2439-2463.	1.0	861
206	Scope and selectivity in palladium-catalyzed directed C–H bond halogenation reactions. Tetrahedron, 2006, 62, 11483-11498.	1.0	282
207	Room Temperature Palladium-Catalyzed 2-Arylation of Indoles. Journal of the American Chemical Society, 2006, 128, 4972-4973.	6.6	607
208	A Simple Catalytic Method for the Regioselective Halogenation of Arenes. Organic Letters, 2006, 8, 2523-2526.	2.4	338
209	Palladium-Catalyzed Fluorination of Carbonâ~'Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 7134-7135.	6.6	580
210	Highly Regioselective Catalytic Oxidative Coupling Reactions:Â Synthetic and Mechanistic Investigations. Journal of the American Chemical Society, 2006, 128, 14047-14049.	6.6	327
211	Regioselectivity in Palladium-Catalyzed C—H Activation/Oxygenation Reactions ChemInform, 2006, 37, no.	0.1	О
212	Regioselectivity in Palladium-Catalyzed Câ^'H Activation/Oxygenation Reactions. Organic Letters, 2005, 7, 4149-4152.	2.4	225
213	Unusually Stable Palladium(IV) Complexes:Â Detailed Mechanistic Investigation of Câ^'O Bond-Forming Reductive Elimination. Journal of the American Chemical Society, 2005, 127, 12790-12791.	6.6	353
214	Oxidative C—H Activation/C—C Bonding Forming Reactions: Synthetic Scope and Mechanistic Insights ChemInform, 2005, 36, no.	0.1	0
215	Oxidative Câ^'H Activation/Câ^'C Bond Forming Reactions:Â Synthetic Scope and Mechanistic Insights. Journal of the American Chemical Society, 2005, 127, 7330-7331.	6.6	739
216	Platinum Model Studies for Palladium-Catalyzed Oxidative Functionalization of Câ^'H Bonds. Organometallics, 2005, 24, 482-485.	1.1	86

#	Article	IF	CITATIONS
217	A Highly Selective Catalytic Method for the Oxidative Functionalization of Câ^'H Bonds. Journal of the American Chemical Society, 2004, 126, 2300-2301.	6.6	982
218	Anti-Markovnikov Hydrofunctionalization of Olefins Mediated by Rhodium–Porphyrin Complexes. Angewandte Chemie - International Edition, 2004, 43, 588-590.	7.2	58
219	anti-Markovnikov Hydrofunctionalization of Olefins Mediated by Rhodium-Porphyrin Complexes ChemInform, 2004, 35, no.	0.1	0
220	A Highly Selective Catalytic Method for the Oxidative Functionalization of C—H Bonds ChemInform, 2004, 35, no.	0.1	0
221	Palladium-Catalyzed Oxygenation of Unactivated sp3 C—H Bonds ChemInform, 2004, 35, no.	0.1	0
222	Palladium-Catalyzed Oxygenation of Unactivated sp3Câ^'H Bonds. Journal of the American Chemical Society, 2004, 126, 9542-9543.	6.6	682
223	Synthesis and Activity of Ruthenium Alkylidene Complexes Coordinated with Phosphine and N-Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 2003, 125, 2546-2558.	6.6	530
224	Synthesis, Structure, and Activity of Enhanced Initiators for Olefin Metathesis. Journal of the American Chemical Society, 2003, 125, 10103-10109.	6.6	305
225	Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2001, 123, 6543-6554.	6.6	1,103
226	A Versatile Precursor for the Synthesis of New Ruthenium Olefin Metathesis Catalysts. Organometallics, 2001, 20, 5314-5318.	1.1	390
227	New Insights into the Mechanism of Ruthenium-Catalyzed Olefin Metathesis Reactions. Journal of the American Chemical Society, 2001, 123, 749-750.	6.6	415
228	Synthesis and Reactivity of Neutral and Cationic Ruthenium(II) Tris(pyrazolyl)borate Alkylidenes. Organometallics, 1998, 17, 5384-5389.	1.1	129