John Howl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079606/publications.pdf

Version: 2024-02-01

57	1,177	20	33
papers	citations	h-index	g-index
58	58	58	1340
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Protein Mimicry and the Design of Bioactive Cell-Penetrating Peptides: The Genesis of STOPSPERM Bioportides. Methods in Molecular Biology, 2022, 2383, 293-306.	0.9	1
2	A new biology of cell penetrating peptides. Peptide Science, 2021, 113, .	1.8	4
3	Chronic exercise training attenuates prostate cancer-induced molecular remodelling in the testis. Cellular Oncology (Dordrecht), 2021, 44, 311-327.	4.4	6
4	Disruption of protein phosphatase 1 complexes with the use of bioportides as a novel approach to target sperm motility. Fertility and Sterility, 2021, 115, 348-362.	1.0	10
5	Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discovery Today, 2021, 26, 2680-2698.	6.4	12
6	The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacological Research, 2020, 161, 105145.	7.1	13
7	The planarian <i>Schmidtea mediterranea</i> as a model system for the discovery and characterization of cellâ€penetrating peptides and bioportides. Chemical Biology and Drug Design, 2019, 93, 1036-1049.	3.2	7
8	Exploring the effect of exercise training on testicular function. European Journal of Applied Physiology, 2019, 119, 1-8.	2.5	22
9	A High-Throughput Synthetic Platform Enables the Discovery of Proteomimetic Cell Penetrating Peptides and Bioportides. International Journal of Peptide Research and Therapeutics, 2019, 25, 1-8.	1.9	9
10	The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: Enhanced antimicrobial properties of mitoparan analogues modified at position-14. Peptides, 2018, 101, 95-105.	2.4	14
11	Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan. BMC Research Notes, 2018, 11, 82.	1.4	10
12	Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates. Bioconjugate Chemistry, 2016, 27, 121-129.	3.6	14
13	Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein interactions. Expert Reviews in Molecular Medicine, 2015, 17, e1.	3.9	19
14	Cell penetrating peptide-mediated transport enables the regulated secretion of accumulated cargoes from mast cells. Journal of Controlled Release, 2015, 202, 108-117.	9.9	18
15	Cell-penetrating peptides, targeting the regulation of store-operated channels, slow decay of the progesterone-induced [Ca2+]isignal in human sperm. Molecular Human Reproduction, 2015, 21, 563-570.	2.8	14
16	Protein Mimicry and the Design of Bioactive Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, 177-190.	0.9	8
17	Can RNAiâ€mediated <i>hsp90α</i> knockdown in combination with 17â€AAG be a therapy for glioma?. FEBS Open Bio, 2013, 3, 271-278.	2.3	5
18	Bioportides: Bioactive cellâ€penetrating peptides that modulate cellular dynamics. Biotechnology Journal, 2013, 8, 918-930.	3.5	30

#	Article	IF	CITATIONS
19	Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Human Reproduction, 2013, 28, 1874-1889.	0.9	40
20	Enantiomer-Specific Bioactivities of Peptidomimetic Analogues of Mastoparan and Mitoparan: Characterization of Inverso Mastoparan as a Highly Efficient Cell Penetrating Peptide. Bioconjugate Chemistry, 2012, 23, 47-56.	3.6	31
21	Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cellular and Molecular Life Sciences, 2012, 69, 2951-2966.	5.4	34
22	Applications of Cell-Penetrating Peptides as Signal Transduction Modulators for the Selective Induction of Apoptosis. Methods in Molecular Biology, 2011, 683, 291-303.	0.9	4
23	Characterization of Bioactive Cell Penetrating Peptides from Human Cytochrome c: Protein Mimicry and the Development of a Novel Apoptogenic Agent. Chemistry and Biology, 2010, 17, 735-744.	6.0	51
24	Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? (WO200808225). Expert Opinion on Therapeutic Patents, 2009, 19, 1329-1333.	5.0	7
25	Mastoparans. , 2009, , 429-445.		2
26	Proteomimetic Cell Penetrating Peptides. International Journal of Peptide Research and Therapeutics, 2008, 14, 359-366.	1.9	23
27	Mitoparan and target-selective chimeric analogues: Membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 849-863.	4.1	49
28	Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology, 2008, 82, 8797-8811.	3.4	87
29	The many futures for cell-penetrating peptides: how soon is now?. Biochemical Society Transactions, 2007, 35, 767-769.	3.4	40
30	A sychnological cell penetrating peptide mimic of p21WAF1/CIP1 is pro-apoptogenic. Peptides, 2007, 28, 731-740.	2.4	28
31	Design, Synthesis and Applications of Cell-penetrant Peptides as Signal Transduction Modulators. , 2006, , 397-398.		0
32	Biological Applications of the Receptor Mimetic Peptide Mastoparan. Current Protein and Peptide Science, 2006, 7, 501-508.	1.4	31
33	Intracellular translocation of the decapeptide carboxyl terminal of Gi3α induces the dual phosphorylation of p42/p44 MAP kinases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 207-214.	4.1	17
34	Chimerism. , 2005, 298, 25-41.		0
35	Charge delocalisation and the design of novel mastoparan analogues: enhanced cytotoxicity and secretory efficacy of [Lys5, Lys8, Aib10]MP. Regulatory Peptides, 2004, 121, 121-128.	1.9	32
36	Intracellular Delivery of Bioactive Peptides to RBL-2H3 Cells Induces \hat{l}^2 -Hexosaminidase Secretion and Phospholipase D Activation. ChemBioChem, 2003, 4, 1312-1316.	2.6	23

#	Article	IF	Citations
37	Bradykinin receptors as a therapeutic target. Expert Opinion on Therapeutic Targets, 2003, 7, 277-285.	3.4	40
38	Novel Mastoparan Analogs Induce Differential Secretion from Mast Cells. Chemistry and Biology, 2002, 9, 63-70.	6.0	13
39	Critical Evaluation of ECV304 as a Human Endothelial Cell Model Defined by Genetic Analysis and Functional Responses: A Comparison with the Human Bladder Cancer Derived Epithelial Cell Line T24/83. Laboratory Investigation, 2000, 80, 37-45.	3.7	170
40	Novel strategies for the design of receptor-selective vasopressin analogues: Aib-substitution and retro-inverso transformation. British Journal of Pharmacology, 1999, 128, 647-652.	5.4	11
41	Effects of vasopressin–mastoparan chimeric peptides on insulin release and G-protein activity. Regulatory Peptides, 1999, 82, 45-51.	1.9	16
42	Biochemical mechanisms of calcium mobilisation induced by mastoparan and chimeric hormonewmastoparan constructs. Cell Calcium, 1998, 24, 27-34.	2.4	36
43	Biochemical pharmacology of total retro-inverso analogues of bradykinin and angiotensin II: Molecular recognition by G-protein-coupled receptors and angiotensin converting enzyme. International Journal of Peptide Research and Therapeutics, 1998, 5, 37-41.	0.1	3
44	Characterization of G Protein-Coupled Receptors Expressed by ECV304 Human Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1998, 6, 23-32.	1.7	10
45	Biotinylated and fluorescent analogues of bradykinin. Biochemical Society Transactions, 1997, 25, 431S-431S.	3.4	0
46	Chimeric analogues of vasopressin and bradykinin. Biochemical Society Transactions, 1997, 25, 432S-432S.	3.4	0
47	Characterization of the human oxytocin receptor ligand binding site. Biochemical Society Transactions, 1997, 25, 436S-436S.	3.4	2
48	Visualization of oxytocin receptors using selective biotinylated probes. Biochemical Society Transactions, 1997, 25, 438S-438S.	3.4	0
49	Calcium-mobilizing actions of chimeric hormone-mastoparan peptides. Biochemical Society Transactions, 1997, 25, 450S-450S.	3.4	4
50	Chimeric Hormones and Neuropeptides. Clinical Science, 1997, 93, 605-606.	4.3	0
51	Chimeric strategies for the rational design of bioactive analogs of small peptide hormones. FASEB Journal, 1997, 11, 582-591.	0.5	35
52	Renal bradykinin and vasopressin receptors: Ligand selectivity and classification. Kidney International, 1996, 50, 586-592.	5.2	11
53	Fluorescent and biotinylated linear peptides as selective bifunctional ligands for the V1a vasopressin receptor. FEBS Journal, 1993, 213, 711-719.	0.2	29
54	V1a Vasopressin Receptors: Selective Biotinylated Probes. Methods in Neurosciences, 1993, 13, 281-296.	0.5	15

JOHN HOWL

#	Article	IF	CITATION
55	Growth of normal human hepatocytes in primary culture: Effect of hormones and growth factors on DNA synthesis. Hepatology, 1991, 14, 1076-1082.	7.3	62
56	Growth of normal human hepatocytes in primary culture: Effect of hormones and growth factors on DNA synthesis. Hepatology, 1991, 14, 1076-1082.	7.3	3
57	Do vasopressin receptors have a significant role in the hormonal regulation of human liver function?. Biochemical Society Transactions, 1990, 18, 399-400.	3.4	2