Tom Vosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207955/publications.pdf Version: 2024-02-01

Том Иосси

#	Article	IF	CITATIONS
1	Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. Journal of the American Chemical Society, 2008, 130, 5038-5039.	6.6	814
2	The Rylene Colorant Family—Tailored Nanoemitters for Photonics Research and Applications. Angewandte Chemie - International Edition, 2010, 49, 9068-9093.	7.2	565
3	Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12616-12621.	3.3	441
4	Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21, 435203.	1.3	289
5	Energy Dissipation in Multichromophoric Single Dendrimers. Accounts of Chemical Research, 2005, 38, 514-522.	7.6	269
6	Rapid Detection of MicroRNA by a Silver Nanocluster DNA Probe. Analytical Chemistry, 2011, 83, 6935-6939.	3.2	252
7	Probing Photophysical Processes in Individual Multichromophoric Dendrimers by Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2000, 122, 9278-9288.	6.6	230
8	Design Aspects of Bright Red Emissive Silver Nanoclusters/DNA Probes for MicroRNA Detection. ACS Nano, 2012, 6, 8803-8814.	7.3	177
9	Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers. ChemSusChem, 2010, 3, 698-701.	3.6	171
10	Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites. Journal of the American Chemical Society, 2009, 131, 3049-3056.	6.6	170
11	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13146-13151.	3.3	168
12	Probing Intramolecular Förster Resonance Energy Transfer in a Naphthaleneimideâ^'Peryleneimideâ^'Terrylenediimide-Based Dendrimer by Ensemble and Single-Molecule Fluorescence Spectroscopy. Journal of the American Chemical Society, 2005, 127, 9760-9768.	6.6	156
13	An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Science Advances, 2018, 4, e1701384.	4.7	143
14	Intramolecular Energy Hopping and Energy Trapping in Polyphenylene Dendrimers with Multiple Peryleneimide Donor Chromophores and a Terryleneimide Acceptor Trap Chromophore. Journal of the American Chemical Society, 2001, 123, 7668-7676.	6.6	142
15	Electron Transfer-Induced Blinking in Ag Nanodot Fluorescence. Journal of Physical Chemistry C, 2009, 113, 20264-20270.	1.5	140
16	Conformational rearrangements in and twisting of a single molecule. Chemical Physics Letters, 2001, 333, 255-263.	1.2	135
17	Antibunching in the Emission of a Single Tetrachromophoric Dendritic System. Journal of the American Chemical Society, 2002, 124, 14310-14311.	6.6	129
18	Optically Modulated Fluorophores for Selective Fluorescence Signal Recovery. Journal of the American Chemical Society, 2009, 131, 4619-4621.	6.6	128

#	Article	IF	CITATIONS
19	Probing Förster Type Energy Pathways in a First Generation Rigid Dendrimer Bearing Two Perylene Imide Chromophores. Journal of Physical Chemistry A, 2003, 107, 6920-6931.	1.1	119
20	Optical Encoding of Silver Zeolite Microcarriers. Advanced Materials, 2010, 22, 957-960.	11.1	115
21	Polyphenylene Dendrimers with Perylene Diimide as a Luminescent Core. Chemistry - A European Journal, 2001, 7, 4844-4853.	1.7	97
22	Photoactivation of Silverâ€Exchanged Zeoliteâ€A. Angewandte Chemie - International Edition, 2008, 47, 2813-2816.	7.2	95
23	Fluorescence Detection from Single Dendrimers with Multiple Chromophores. Angewandte Chemie - International Edition, 1999, 38, 3752-3756.	7.2	92
24	Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. Photochemical and Photobiological Sciences, 2010, 9, 716-721.	1.6	90
25	Photophysical study of a multi-chromophoric dendrimer by time-resolved fluorescence and femtosecond transient absorption spectroscopy. Chemical Physics Letters, 1999, 304, 1-9.	1.2	87
26	Crystal structure of a NIRâ€Emitting DNAâ€Stabilized Ag ₁₆ Nanocluster. Angewandte Chemie - International Edition, 2019, 58, 17153-17157.	7.2	87
27	Solutionâ€Processed Ultrathin Chemically Derived Graphene Films as Soft Top Contacts for Solid‧tate Molecular Electronic Junctions. Advanced Materials, 2012, 24, 1333-1339.	11.1	82
28	Reduced graphene oxide for Li–air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon, 2015, 85, 233-244.	5.4	78
29	Multichromophoric Dendrimers as Single-Photon Sources:Â A Single-Molecule Study. Journal of Physical Chemistry B, 2004, 108, 16686-16696.	1.2	76
30	Tuning the Fermi Level of SiO ₂ -Supported Single-Layer Graphene by Thermal Annealing. Journal of Physical Chemistry C, 2010, 114, 6894-6900.	1.5	75
31	Ultrathin Reduced Graphene Oxide Films as Transparent Topâ€Contacts for Light Switchable Solidâ€6tate Molecular Junctions. Advanced Materials, 2013, 25, 4164-4170.	11.1	75
32	Higher-Excited-State Photophysical Pathways in Multichromophoric Systems Revealed by Single-Molecule Fluorescence Spectroscopy. ChemPhysChem, 2004, 5, 1786-1790.	1.0	72
33	Properties of Single Dendrimer Molecules Studied by Atomic Force Microscopyâ€. Langmuir, 2000, 16, 9009-9014.	1.6	71
34	Thermally activated LTA(Li)–Ag zeolites with water-responsive photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 11857-11867.	2.7	70
35	Synthesis and photophysical characterization of chalcogen substituted BODIPY dyes. New Journal of Chemistry, 2009, 33, 1490.	1.4	69
36	Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2093-2107.	2.0	68

#	Article	IF	CITATIONS
37	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules. Angewandte Chemie - International Edition, 2001, 40, 4643-4648.	7.2	68
38	Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: A Raman study. Electrochimica Acta, 2013, 114, 455-461.	2.6	65
39	Single Layer vs Bilayer Graphene: A Comparative Study of the Effects of Oxygen Plasma Treatment on Their Electronic and Optical Properties. Journal of Physical Chemistry C, 2011, 115, 16619-16624.	1.5	60
40	Fluorescence Lifetimes and Emission Patterns Probe the 3D Orientation of the Emitting Chromophore in a Multichromophoric System. Journal of the American Chemical Society, 2004, 126, 14310-14311.	6.6	59
41	Highly Conductive Semitransparent Graphene Circuits Screenâ€Printed from Waterâ€Based Graphene Oxide Ink. Advanced Materials Technologies, 2017, 2, 1700011.	3.0	59
42	Structure and luminescence of DNA-templated silver clusters. Nanoscale Advances, 2021, 3, 1230-1260.	2.2	55
43	In Situ Observation of the Emission Characteristics of Zeoliteâ€Hosted Silver Species During Heat Treatment. ChemPhysChem, 2010, 11, 1627-1631.	1.0	52
44	Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb ³⁺ ions. RSC Advances, 2012, 2, 1496-1501.	1.7	52
45	A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotechnology, 2014, 9, 131-136.	15.6	52
46	Electron Transfer at the Single-Molecule Level in a Triphenylamine-Perylene Imide Molecule. ChemPhysChem, 2005, 6, 942-948.	1.0	46
47	Design, synthesis, and time-gated cell imaging of carbon-bridged triangulenium dyes with long fluorescence lifetime and red emission. Chemical Science, 2018, 9, 3122-3130.	3.7	46
48	Ultrafast coherence transfer in DNA-templated silver nanoclusters. Nature Communications, 2017, 8, 15577.	5.8	45
49	Core-shell TiO2@C: towards alternative supports as replacement for high surface area carbon for PEMFC catalysts. Electrochimica Acta, 2014, 139, 21-28.	2.6	39
50	On the structural composition and stability of Fe–N–C catalysts prepared by an intermediate acid leaching. Journal of Solid State Electrochemistry, 2016, 20, 969-981.	1.2	39
51	Energy Transfer Pathways in a Ryleneâ€Based Triad. ChemPhysChem, 2011, 12, 595-608.	1.0	36
52	Spectrally resolved confocal microscopy using lanthanide centred near-IR emission. Chemical Communications, 2015, 51, 2372-2375.	2.2	36
53	Time-resolved confocal microscopy using lanthanide centred near-IR emission. RSC Advances, 2015, 5, 70282-70286.	1.7	35
54	Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster. Chemical Communications, 2017, 53, 12556-12559.	2.2	34

#	Article	IF	CITATIONS
55	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters, 2005, 401, 503-508.	1.2	33
56	Unusually large fluorescence quantum yield for a near-infrared emitting DNA-stabilized silver nanocluster. Chemical Communications, 2020, 56, 6384-6387.	2.2	33
57	Probing DNA-stabilized fluorescent silver nanocluster spectral heterogeneity by time-correlated single photon counting. Analyst, The, 2016, 141, 123-130.	1.7	32
58	Discrimination of Dendrimer Aggregates on Mica Based on Adhesion Force:Â A Pulsed Force Mode Atomic Force Microscopy Study. Langmuir, 2000, 16, 9294-9298.	1.6	31
59	Green Emitting Photoproducts from Terrylene Diimide after Red Illumination. Journal of the American Chemical Society, 2013, 135, 19180-19185.	6.6	31
60	Excited-State Relaxation and Förster Resonance Energy Transfer in an Organic Fluorophore/Silver Nanocluster Dyad. ACS Omega, 2017, 2, 4657-4664.	1.6	31
61	Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster. Methods and Applications in Fluorescence, 2018, 6, 024004.	1.1	31
62	A statistical approach to inelastic electron tunneling spectroscopy on fullerene-terminated molecules. Physical Chemistry Chemical Physics, 2011, 13, 14325.	1.3	30
63	UVâ€Induced Synthesis and Stabilization of Surfactantâ€Free Colloidal Pt Nanoparticles with Controlled Particle Size in Ethylene Glycol. ChemNanoMat, 2017, 3, 89-93.	1.5	30
64	The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH4 over Ni catalysts. Carbon, 2012, 50, 372-384.	5.4	29
65	Lipid-conjugated fluorescent pH sensors for monitoring pH changes in reconstituted membrane systems. Analyst, The, 2015, 140, 6313-6320.	1.7	29
66	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Perylenediimide Trimer. Journal of Physical Chemistry C, 2009, 113, 11773-11782.	1.5	28
67	Molecular sieve properties of mesoporous silica with intraporous nanocarbon. Chemical Communications, 2010, 46, 928-930.	2.2	28
68	Electrochemical reactions at a porphyrin–copper interface. Physical Chemistry Chemical Physics, 2009, 11, 5422.	1.3	27
69	Solventâ€Dependent Growth and Stabilization Mechanisms of Surfactantâ€Free Colloidal Pt Nanoparticles. Chemistry - A European Journal, 2020, 26, 9012-9023.	1.7	26
70	Modified, semiconducting graphene in contact with a metal: Characterization of the Schottky diode. Applied Physics Letters, 2010, 97, .	1.5	25
71	Anti-Stokes fluorescence microscopy using direct and indirect dark state formation. Chemical Communications, 2018, 54, 4569-4572.	2.2	25
72	Switchable Dual-Emissive DNA-Stabilized Silver Nanoclusters. ACS Omega, 2019, 4, 7895-7902.	1.6	25

#	Article	IF	CITATIONS
73	Self-Assembled Polyphenylene Dendrimer Nanofibers on Highly Oriented Pyrolytic Graphite Studied by Atomic Force Microscopy. Langmuir, 2002, 18, 8223-8230.	1.6	24
74	Single-Molecule Detection of DNA-Stabilized Silver Nanoclusters Emitting at the NIR I/II Border. Journal of Physical Chemistry Letters, 2021, 12, 1150-1154.	2.1	23
75	Probing Carboxylic Acid Groups in Replaced and Mixed Self-Assembled Monolayers by Individual Ionized Dendrimer Molecules:  An Atomic Force Microscopy Study. Langmuir, 2002, 18, 1801-1810.	1.6	22
76	End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control. Journal of Colloid and Interface Science, 2012, 376, 83-90.	5.0	22
77	Modulation of Fluorescence Signals from Biomolecules along Nanowires Due to Interaction of Light with Oriented Nanostructures. Nano Letters, 2015, 15, 176-181.	4.5	22
78	A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. Journal of Physical Chemistry A, 2016, 120, 6719-6727.	1.1	22
79	Rational Design of Bright Long Fluorescence Lifetime Dyad Fluorophores for Single Molecule Imaging and Detection. Journal of the American Chemical Society, 2021, 143, 1377-1385.	6.6	22
80	Disentangling optically activated delayed fluorescence and upconversion fluorescence in DNA stabilized silver nanoclusters. Chemical Science, 2019, 10, 5326-5331.	3.7	20
81	Synthesis of and excited state processes in multichromophoric dendritic systems. Journal of Luminescence, 2005, 111, 239-253.	1.5	19
82	Graphitic nanocrystals inside the pores of mesoporous silica: Synthesis, characterization and an adsorption study. Microporous and Mesoporous Materials, 2011, 144, 120-133.	2.2	18
83	Fabrication of silver nanoparticles with limited size distribution on TiO ₂ containing zeolites. Physical Chemistry Chemical Physics, 2014, 16, 18690-18693.	1.3	18
84	Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. Nanotechnology, 2016, 27, 305704.	1.3	18
85	Mutation of position 5 as a crystal engineering tool for a NIR-emitting DNA-stabilized Ag ₁₆ nanocluster. CrystEngComm, 2020, 22, 8136-8141.	1.3	18
86	Observation of microsecond luminescence while studying two DNA-stabilized silver nanoclusters emitting in the 800–900 nm range. Physical Chemistry Chemical Physics, 2021, 23, 13483-13489.	1.3	18
87	Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling. Journal of Applied Crystallography, 2020, 53, 148-158.	1.9	18
88	The effect of deuterium on the photophysical properties of DNA-stabilized silver nanoclusters. Chemical Science, 2021, 12, 16100-16105.	3.7	18
89	Polarisation Sensitive Single Molecule Fluorescence Detection with Linear Polarised Excitation Light and Modulated Polarisation Direction Applied to Multichromophoric Entities. Single Molecules, 2001, 2, 35-44.	1.7	17
90	Unraveling Excited-State Dynamics in a Polyfluorene-Perylenediimide Copolymer. Journal of Physical Chemistry B, 2010, 114, 1277-1286.	1.2	17

#	Article	IF	CITATIONS
91	Thulium- and Erbium-Doped Nanoparticles with Poly(acrylic acid) Coating for Upconversion Cross-Correlation Spectroscopy-based Sandwich Immunoassays in Plasma. ACS Applied Nano Materials, 2021, 4, 432-440.	2.4	17
92	Single-molecule excitation–emission spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4064-4069.	3.3	16
93	Removal of the A ₁₀ adenosine in a DNA-stabilized Ag ₁₆ nanocluster. RSC Advances, 2020, 10, 23854-23860.	1.7	16
94	Singleâ€Molecule Characterization of Nearâ€Infraredâ€Emitting Silver Nanoclusters. Advanced Optical Materials, 2015, 3, 1109-1115.	3.6	15
95	Synthesis Mechanism and Influence of Light on Unprotected Platinum Nanoparticles Synthesis at Room Temperature. ChemNanoMat, 2016, 2, 104-107.	1.5	15
96	Upconversion Cross orrelation Spectroscopy of a Sandwich Immunoassay. Chemistry - A European Journal, 2018, 24, 9229-9233.	1.7	15
97	Probing heterogeneity of NIR induced secondary fluorescence from DNA-stabilized silver nanoclusters at the single molecule level. Physical Chemistry Chemical Physics, 2018, 20, 16316-16319.	1.3	15
98	UV-induced syntheses of surfactant-free precious metal nanoparticles in alkaline methanol and ethanol. Nanoscale Advances, 2020, 2, 2288-2292.	2.2	15
99	Spatially Localized Synthesis and Structural Characterization of Platinum Nanocrystals Obtained Using UV Light. ACS Omega, 2018, 3, 10351-10356.	1.6	13
100	The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster. Methods and Applications in Fluorescence, 2020, 8, 014005.	1.1	13
101	Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires. Scientific Reports, 2015, 5, 15273.	1.6	11
102	Modification of Ïfâ€Ðonor Properties of Terminal Carbide Ligands Investigated Through Carbide–Iodine Adduct Formation. Angewandte Chemie - International Edition, 2016, 55, 12484-12487.	7.2	11
103	Crystal structure of a NIRâ€Emitting DNAâ€Stabilized Ag 16 Nanocluster. Angewandte Chemie, 2019, 131, 17313-17317.	1.6	11
104	Facile Synthesis of Mildly Oxidized Graphite Inks for Screenâ€Printing of Highly Conductive Electrodes. Advanced Engineering Materials, 2019, 21, 1801304.	1.6	11
105	Insights from <i>In Situ</i> Studies on the Early Stages of Platinum Nanoparticle Formation. Journal of Physical Chemistry Letters, 2021, 12, 3224-3231.	2.1	11
106	Probing emission of a DNA-stabilized silver nanocluster from the sub-nanosecond to millisecond timescale in a single measurement. Chemical Science, 2022, 13, 5582-5587.	3.7	11
107	Photophysical Properties of Fluorescent Core Dendrimers Controlled by Size. Journal of Physical Chemistry B, 2016, 120, 9576-9580.	1.2	10
108	Luminescence from Lanthanide(III) Ions Bound to the Glycocalyx of Chinese Hamster Ovary Cells. Chemistry - A European Journal, 2018, 24, 11885-11889.	1.7	10

#	Article	IF	CITATIONS
109	Investigating dye performance and crosstalk in fluorescence enabled bioimaging using a model system. PLoS ONE, 2017, 12, e0188359.	1.1	9
110	Photon Energy Dependent Micro-Raman Spectroscopy with a Continuum Laser Source. Scientific Reports, 2018, 8, 11621.	1.6	9
111	Frequency Encoding of Upconversion Nanoparticle Emission for Multiplexed Imaging of Spectrally and Spatially Overlapping Lanthanide Ions. Journal of the American Chemical Society, 2021, 143, 19399-19405.	6.6	9
112	Asymmetric electrode-molecule transport dynamics tracked by nanoscale electroluminescence. Physical Review B, 2006, 74, .	1.1	8
113	Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives. Journal of Physical Chemistry B, 2014, 118, 14662-14674.	1.2	8
114	High-Quality Reduced Graphene Oxide Electrodes for Sub-Kelvin Studies of Molecular Monolayer Junctions. Journal of Physical Chemistry C, 2018, 122, 25102-25109.	1.5	8
115	Lanthanide-Doped Nanoparticles for Stimulated Emission Depletion Nanoscopy. ACS Applied Nano Materials, 2019, 2, 5817-5823.	2.4	8
116	Charge injection into discrete states of individual electroluminescent Au nanoclusters. Physical Review B, 2006, 74, .	1.1	7
117	Tuning the response of non-allowed Raman modes in GaAs nanowires. Journal Physics D: Applied Physics, 2016, 49, 095103.	1.3	7
118	Probing the Absorption and Emission Transition Dipole Moment of DNA Stabilized Silver Nanoclusters. Journal of Physical Chemistry A, 2017, 121, 963-968.	1.1	7
119	Creating infinite contrast in fluorescence microscopy by using lanthanide centered emission. PLoS ONE, 2017, 12, e0189529.	1.1	7
120	Chiral non-periodic surface-confined molecular nanopatterns revealed by scanning tunnelling microscopy. CrystEngComm, 2011, 13, 5578.	1.3	6
121	Emissive Photoconversion Products of an Amino-triangulenium Dye. Journal of Physical Chemistry A, 2016, 120, 3554-3561.	1.1	6
122	Peptide‧tabilized, Fluorescent Silver Nanoclusters: Solidâ€Phase Synthesis and Screening. Chemistry - A European Journal, 2016, 22, 18492-18500.	1.7	6
123	Micro-Raman spectroscopy for the detection of stacking fault density in InAs and GaAs nanowires. Physical Review B, 2017, 96, .	1.1	6
124	Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation. Applied Physics Letters, 2015, 107, .	1.5	5
125	Spatial distribution and temporal evolution of DRONPA-fused SNAP25 clusters in adrenal chromaffin cells. Photochemical and Photobiological Sciences, 2015, 14, 1005-1012.	1.6	5
126	NIR induced modulation of the red emission from erbium ions for selective lanthanide imaging. Methods and Applications in Fluorescence, 2018, 6, 044001.	1.1	5

#	Article	IF	CITATIONS
127	Spectral shifts of BODIPY derivatives: a simple continuous model. Photochemical and Photobiological Sciences, 2019, 18, 1315-1323.	1.6	5
128	Single molecule detection of macromolecules. Macromolecular Symposia, 2002, 178, 1-10.	0.4	4
129	Probing the Fluorescence Behavior of DNAâ€Stabilized Silver Nanoclusters in the Presence of Biomolecules. ChemPhotoChem, 2021, 5, 369-375.	1.5	4
130	Stokes shift microscopy by excitation and emission imaging. Optics Express, 2019, 27, 8208.	1.7	4
131	The colloidal tool-box approach for fuel cell catalysts: utilizing graphitized carbon supports. Electrochimica Acta, 2016, 197, 221-227.	2.6	3
132	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Terrylenediimide Dimer. Journal of Physical Chemistry B, 2016, 120, 2333-2342.	1.2	3
133	Single-molecule spectroscopy to probe competitive fluorescence resonance energy transfer pathways in bichromophoric synthetic systems. , 2004, , .		2
134	A Critical Assessment of the Synthesis of Diameter and Chirality Controlled CNTs in Zeolites. ECS Transactions, 2009, 19, 161-174.	0.3	2
135	Bridging the gap between cellulose chemistry and heterogeneous catalysis. , 2011, , .		2
136	Innenrücktitelbild: Crystal structure of a NIRâ€Emitting DNAâ€Stabilized Ag ₁₆ Nanocluster (Angew. Chem. 48/2019). Angewandte Chemie, 2019, 131, 17643-17643.	1.6	1
137	Excited state processes in individual multichromophoric systems. , 2003, 4962, 1.		0
138	Chapter 1 Photophysical processes in multichromophoric systems at the ensemble and single molecule level. Handai Nanophotonics, 2004, , 3-21.	0.0	0
139	Energy Dissipation in Multichromophoric Single Dendrimers. ChemInform, 2005, 36, no.	0.1	0
140	Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene. Materials Research Society Symposia Proceedings, 2011, 1336, 20701.	0.1	0
141	Modification of Ïfâ€Donor Properties of Terminal Carbide Ligands Investigated Through Carbide–Iodine Adduct Formation. Angewandte Chemie, 2016, 128, 12672-12675.	1.6	0
142	Frontispiece: Luminescence from Lanthanide(III) Ions Bound to the Glycocalyx of Chinese Hamster Ovary Cells. Chemistry - A European Journal, 2018, 24, .	1.7	0
143	Single-Molecule Excitation-Emission Spectroscopy at Room Temperature Based on a Common-Path Interferometer. , 2019, , .		0
144	Intrinsic anti-Stokes emission in living HeLa cells. PLoS ONE, 2020, 15, e0230441.	1.1	0

#	Article	IF	CITATIONS
145	Excitation-Emission Fluorescence Spectroscopy with Single Molecule Sensitivity Using a Common-Path Interferometer. , 2018, , .		0
146	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
147	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
148	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
149	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
150	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
151	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
152	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
153	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0