Henrik Viberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207948/publications.pdf

Version: 2024-02-01

40 papers

2,749 citations

28 h-index

315616 38 g-index

40 all docs 40 docs citations

times ranked

40

2172 citing authors

#	Article	IF	CITATIONS
1	Evaluation of the dentate gyrus in adult mice exposed to acetaminophen (paracetamol) on postnatal day 10. International Journal of Developmental Neuroscience, 2021, 81, 91-97.	0.7	4
2	A Single $\hat{\Gamma}$ 9-Tetrahydrocannabinol (THC) Dose During Brain Development Affects Markers of Neurotrophy, Oxidative Stress, and Apoptosis. Frontiers in Pharmacology, 2019, 10, 1156.	1.6	8
3	A Cannabinoid Receptor Type 1 (CB1R) Agonist Enhances the Developmental Neurotoxicity of Acetaminophen (Paracetamol). Toxicological Sciences, 2018, 166, 203-212.	1.4	14
4	Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period. Journal of Applied Toxicology, 2017, 37, 1174-1181.	1.4	42
5	Perfluorooctane Sulfonate and PerfluorooctanoicÂAcid. , 2017, , 811-827.		3
6	Short-term exposure and long-term consequences of neonatal exposure to î"9-tetrahydrocannabinol (THC) and ibuprofen in mice. Behavioural Brain Research, 2016, 307, 137-144.	1.2	24
7	Postnatal exposure to PFOS, but not PBDE 99, disturb dopaminergic gene transcription in the mouse CNS. Environmental Toxicology and Pharmacology, 2016, 41, 121-126.	2.0	27
8	Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice. Archives of Toxicology, 2015, 89, 2345-2354.	1.9	10
9	Developmental neurotoxic effects of two pesticides: Behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology, 2015, 335, 1-10.	2.0	58
10	Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicology and Applied Pharmacology, 2015, 288, 429-438.	1.3	52
11	More signs of neurotoxicity of surfactants and flame retardants – Neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the mouse CNS. Environmental Toxicology and Pharmacology, 2015, 40, 409-416.	2.0	32
12	Neurotoxicity. Molecular and Integrative Toxicology, 2015, , 219-238.	0.5	2
13	Paracetamol (Acetaminophen) Administration During Neonatal Brain Development Affects Cognitive Function and Alters Its Analgesic and Anxiolytic Response in Adult Male Mice. Toxicological Sciences, 2014, 138, 139-147.	1.4	114
14	Neonatal exposure to a moderate dose of ionizing radiation causes behavioural defects and altered levels of tau protein in mice. NeuroToxicology, 2014, 45, 48-55.	1.4	27
15	Developmental exposure to the polybrominated diphenyl ether PBDE 209: Neurobehavioural and neuroprotein analysis in adult male and female mice. Environmental Toxicology and Pharmacology, 2014, 38, 570-585.	2.0	34
16	Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology, 2013, 304, 185-191.	2.0	91
17	A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. NeuroToxicology, 2013, 37, 190-196.	1.4	62
18	A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice. NeuroToxicology, 2012, 33, 1390-1395.	1.4	36

#	Article	IF	CITATIONS
19	Neonatal exposure to propofol affects BDNF but not CaMKII, GAP-43, synaptophysin and tau in the neonatal brain and causes an altered behavioural response to diazepam in the adult mouse brain. Behavioural Brain Research, 2011, 223, 75-80.	1.2	32
20	Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology, 2011, 289, 59-65.	2.0	70
21	Dose-dependent behavioral disturbances after a single neonatal Bisphenol A dose. Toxicology, 2011, 290, 187-194.	2.0	44
22	Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior. Nutrition, 2011, 27, 81-85.	1.1	17
23	Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)., 2011,, 623-635.		7
24	Exposure to Polybrominated Diphenyl Ethers 203 and 206 during the Neonatal Brain Growth Spurt Affects Proteins Important for Normal Neurodevelopment in Mice. Toxicological Sciences, 2009, 109, 306-311.	1.4	40
25	Neonatal Exposure to PFOS and PFOA in Mice Results in Changes in Proteins which are Important for Neuronal Growth and Synaptogenesis in the Developing Brain. Toxicological Sciences, 2009, 108, 412-418.	1.4	219
26	Neonatal ontogeny and neurotoxic effect of decabrominated diphenyl ether (PBDE 209) on levels of synaptophysin and tau. International Journal of Developmental Neuroscience, 2009, 27, 423-429.	0.7	40
27	Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology, 2008, 249, 153-159.	2.0	83
28	Response to the comment on Viberg et al. (2008) "Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly―by Ching-Hung Hsu. Toxicology, 2008, 253, 154.	2.0	1
29	Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. NeuroToxicology, 2008, 29, 152-159.	1.4	120
30	Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). NeuroToxicology, 2007, 28, 136-142.	1.4	134
31	Neonatal Exposure to Higher Brominated Diphenyl Ethers, Hepta-, Octa-, or Nonabromodiphenyl Ether, Impairs Spontaneous Behavior and Learning and Memory Functions of Adult Mice. Toxicological Sciences, 2006, 92, 211-218.	1.4	157
32	Proteomic Evaluation of Neonatal Exposure to $2,2\hat{a}\in ^2,4,4\hat{a}\in ^2,5$ -Pentabromodiphenyl Ether. Environmental Health Perspectives, 2006, 114, 254-259.	2.8	60
33	Deranged spontaneous behaviour and decrease in cholinergic muscarinic receptors in hippocampus in the adult rat, after neonatal exposure to the brominated flame-retardant, 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE 99). Environmental Toxicology and Pharmacology, 2005, 20, 283-288.	2.0	52
34	Dose-Response Modeling and Benchmark Calculations from Spontaneous Behavior Data on Mice Neonatally Exposed to 2,2',4,4',5-Pentabromodiphenyl Ether. Toxicological Sciences, 2004, 81, 491-501.	1.4	35
35	Investigations of Strain and/or Gender Differences in Developmental Neurotoxic Effects of Polybrominated Diphenyl Ethers in Mice. Toxicological Sciences, 2004, 81, 344-353.	1.4	113
36	Neonatal exposure to the brominated flame-retardant, 2,2′,4,4′,5-pentabromodiphenyl ether, decreases cholinergic nicotinic receptors in hippocampus and affects spontaneous behaviour in the adult mouse. Environmental Toxicology and Pharmacology, 2004, 17, 61-65.	2.0	84

#	Article	IF	CITATIONS
37	Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicology and Applied Pharmacology, 2003, 192, 95-106.	1.3	298
38	Neurobehavioral Derangements in Adult Mice Receiving Decabrominated Diphenyl Ether (PBDE 209) during a Defined Period of Neonatal Brain Development. Toxicological Sciences, 2003, 76, 112-120.	1.4	282
39	Neonatal Exposure to the Brominated Flame Retardant 2,2`,4,4`,5-Pentabromodiphenyl Ether Causes Altered Susceptibility in the Cholinergic Transmitter System in the Adult Mouse. Toxicological Sciences, 2002, 67, 104-107.	1.4	172
40	The developing cholinergic system as target for environmental toxicants, nicotine and polychlorinated biphenyls (PCBs): Implications for neurotoxicological processes in mice. Neurotoxicity Research, 2001, 3, 37-51.	1.3	49