
Juhee Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079420/publications.pdf Version: 2024-02-01

Ιπρες γην

#	Article	IF	CITATIONS
1	Assessment of phage-mediated control of antibiotic-resistant Salmonella Typhimurium during the transition from planktonic to biofilm cells. Microbial Pathogenesis, 2022, 162, 105365.	2.9	2
2	Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS ONE, 2022, 17, e0262099.	2.5	24
3	Role of Efflux Pump-Mediated Antibiotic Resistance in Quorum Sensing-Regulated Biofilm Formation by Salmonella Typhimurium. Pathogens, 2022, 11, 147.	2.8	18
4	Antibiofilm Activity of β-Lactam/β-Lactamase Inhibitor Combination against Multidrug-Resistant Salmonella Typhimurium. Pathogens, 2022, 11, 349.	2.8	3
5	Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microbial Pathogenesis, 2022, 168, 105576.	2.9	5
6	Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics, 2022, 11, 915.	3.7	21
7	Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms, 2022, 10, 1385.	3.6	28
8	Effectiveness of Antibiotic Combination Treatments to Control Heteroresistant <i>Salmonella</i> Typhimurium. Microbial Drug Resistance, 2021, 27, 441-449.	2.0	5
9	Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microbial Pathogenesis, 2021, 150, 104726.	2.9	6
10	Development of phage-based assay to differentiate ciprofloxacin resistant and sensitive Salmonella Typhimurium. Food Science and Biotechnology, 2021, 30, 315-320.	2.6	0
11	Insights into collateral susceptibility and collateral resistance in Acinetobacter baumannii during antimicrobial adaptation. Letters in Applied Microbiology, 2021, 73, 168-175.	2.2	4
12	Polyquaternium enhances the colloidal stability of chitosan-capped platinum nanoparticles and their antibacterial activity. Nanotechnology, 2021, 32, 455603.	2.6	7
13	Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population. Microbial Pathogenesis, 2021, 157, 104973.	2.9	2
14	Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium. Antibiotics, 2021, 10, 1019.	3.7	3
15	Advances in bacteriophage-mediated control strategies to reduce bacterial virulence. Current Opinion in Food Science, 2021, 41, 52-59.	8.0	1
16	Novel Synergistic Approaches of Nano-Biomaterials and Bacteriophage for Combating Antimicrobial Resistance. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 114-132.	0.3	0
17	Unveiling the potentials of bacteriocin (Pediocin L50) from Pediococcus acidilactici with antagonist spectrum in a Caenorhabditis elegans model. International Journal of Biological Macromolecules, 2020, 143, 555-572.	7.5	12
18	Assessment of phage-mediated inhibition of Salmonella Typhimurium treated with sublethal concentrations of ceftriaxone and ciprofloxacin. FEMS Microbiology Letters, 2020, 367, .	1.8	10

#	Article	IF	CITATIONS
19	Assessment of cross-resistance potential to serial antibiotic treatments in antibiotic-resistant Salmonella Typhimurium. Microbial Pathogenesis, 2020, 148, 104478.	2.9	8
20	The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms, 2020, 8, 670.	3.6	39
21	Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microbial Pathogenesis, 2020, 143, 104159.	2.9	4
22	Role of antibiotic stress in phenotypic switching to persister cells of antibiotic-resistant Staphylococcus aureus. Annals of Microbiology, 2020, 70, .	2.6	23
23	Bacteriophage control of Salmonella Typhimurium in milk. Food Science and Biotechnology, 2019, 28, 297-301.	2.6	16
24	Monoolein cubic phase containing alginate/cystamine gel for controlled release of epidermal growth factor. Journal of Dispersion Science and Technology, 2019, 40, 119-127.	2.4	6
25	Assessment of antibiotic resistance in bacteriophage-insensitive Klebsiella pneumoniae. Microbial Pathogenesis, 2019, 135, 103625.	2.9	6
26	Application of Bacteriophages in Organic Farm Animal Production. , 2019, , 365-375.		3
27	Food Safety Engineering. , 2019, , 91-113.		6
28	Proteomics-based discrimination of differentially expressed proteins in antibiotic-sensitive and antibiotic-resistant Salmonella Typhimurium, Klebsiella pneumoniae, and Staphylococcus aureus. Archives of Microbiology, 2019, 201, 1259-1275.	2.2	5
29	Development of de novo resistance in Salmonella Typhimurium treated with antibiotic combinations. FEMS Microbiology Letters, 2019, 366, .	1.8	4
30	Assessment of the alteration in phage adsorption rates of antibiotic-resistant Salmonella typhimurium. Archives of Microbiology, 2019, 201, 983-989.	2.2	4
31	Bacteriophages as Potential Tools for Detection and Control of Salmonella spp. in Food Systems. Microorganisms, 2019, 7, 570.	3.6	32
32	Variability in the Adaptive Response of Antibiotic-Resistant <i>Salmonella</i> Typhimurium to Environmental Stresses. Microbial Drug Resistance, 2019, 25, 182-192.	2.0	15
33	Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus. Food Control, 2018, 90, 241-248.	5.5	40
34	Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella Typhimurium. Food Science and Biotechnology, 2018, 27, 921-928.	2.6	18
35	Combined effect of bacteriophage and antibiotic on the inhibition of the development of antibiotic resistance in Salmonella typhimurium. Food Science and Biotechnology, 2018, 27, 1239-1244.	2.6	15
36	Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Research International, 2018, 105, 178-183.	6.2	31

#	Article	IF	CITATIONS
37	Significance of bacteriophages in fermented soybeans: A review. Biomolecular Concepts, 2018, 9, 131-142.	2.2	9
38	Characterization of bacteriophages specificity for antibiotic-resistant Salmonella typhimurium. Annals of Microbiology, 2018, 68, 637-643.	2.6	4
39	Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control, 2017, 71, 17-25.	5.5	60
40	Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat. Ultrasonics Sonochemistry, 2017, 39, 101-110.	8.2	83
41	Characterization of Clinically Isolated Antibiotic-ResistantSalmonellaTyphimurium Exposed to Subinhibitory Concentrations of Ceftriaxone and Ciprofloxacin. Microbial Drug Resistance, 2017, 23, 949-957.	2.0	5
42	Relationship between β-lactamase production and resistance phenotype in Klebsiella pneumoniae strains. FEMS Microbiology Letters, 2017, 364, .	1.8	4
43	Antimicrobial activity of crude extracts prepared from fungal mycelia. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 257-261.	1.2	14
44	Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 2017, 75, 83-91.	5.5	339
45	Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in <i>Staphylococcus aureus</i> . Letters in Applied Microbiology, 2017, 65, 462-468.	2.2	25
46	Comparison of antibiotic resistance phenotypes in laboratory strains and clinical isolates of Staphylococcus aureus, Salmonella Typhimurium, and Klebsiella pneumoniae. Food Science and Biotechnology, 2017, 26, 1773-1779.	2.6	2
47	Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. Annals of Clinical Microbiology and Antimicrobials, 2017, 16, 66.	3.8	30
48	Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Science and Biotechnology, 2016, 25, 935-940.	2.6	35
49	Storage Stability of Slightly Acidic Electrolyzed Water and Circulating Electrolyzed Water and Their Property Changes after Application. Journal of Food Science, 2016, 81, E610-7.	3.1	34
50	Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiology, 2016, 16, 170.	3.3	26
51	Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments. Annals of Clinical Microbiology and Antimicrobials, 2016, 15, 60.	3.8	12
52	Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Archives of Microbiology, 2016, 198, 521-529.	2.2	17
53	Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food Science and Biotechnology, 2016, 25, 1211-1215.	2.6	28
54	Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy. Applied and Environmental Microbiology, 2016, 82, 1828-1837.	3.1	138

#	Article	IF	CITATIONS
55	Evaluation of bacteriophage amplification assay for rapid detection of Shigella boydii in food systems. Annals of Microbiology, 2016, 66, 883-888.	2.6	3
56	In-Vitro Adhesion and Invasion Properties of Salmonella Typhimurium Competing with Bacteriophage in Epithelial Cells and Chicken Macrophages. Brazilian Journal of Poultry Science, 2015, 17, 427-432.	0.7	8
57	Assessment of Bacteriophage-induced Inflammatory Mediators in <i>Salmonella</i> -infected Chicken Macrophage HD11 Cells. Journal of Poultry Science, 2015, 52, 238-243.	1.6	3
58	Inactivation of <i>Geobacillus stearothermophilus</i> spores in low-acid foods by pressure-assisted thermal processing. Journal of the Science of Food and Agriculture, 2015, 95, 174-178.	3.5	13
59	Application of chitosan–alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. International Journal of Food Science and Technology, 2015, 50, 913-918.	2.7	39
60	Changes in physiological properties of bacteriophage-insensitive Staphylococcus aureus. Annals of Microbiology, 2015, 65, 1879-1884.	2.6	0
61	Effect of Bacteriophage on the Transcriptional and Translational Expression of Inflammatory Mediators in Chicken Macrophage. Journal of Poultry Science, 2014, 51, 96-103.	1.6	4
62	Physiological and molecular responses of antibiotic-resistant Salmonella enterica serovar Typhimurium to acid stress. African Journal of Microbiology Research, 2014, 8, 578-589.	0.4	3
63	Screening Foods for Processing-Resistant Bacterial Spores and Characterization of a Pressure- and Heat-Resistant Bacillus licheniformis Isolate. Journal of Food Protection, 2014, 77, 948-954.	1.7	6
64	Physicochemical, Mechanical, and Molecular Properties of Nonlysogenic and P22-Lysogenic Salmonella Typhimurium Treated with Citrus Oil. Journal of Food Protection, 2014, 77, 758-764.	1.7	9
65	Inactivation kinetics and injury recovery of Bacillus amyloliquefaciens spores in low-acid foods during pressure-assisted thermal processing. Food Science and Biotechnology, 2014, 23, 1851-1857.	2.6	2
66	Effect of a post-packaging pasteurization process on inactivation of a Listeria innocua surrogate in meat products. Food Science and Biotechnology, 2014, 23, 1477-1481.	2.6	4
67	Effect of High-Pressure Post-Packaging Pasteurization on Microbiological Quality of Ready-to-Use Vegetables. Journal of Food Processing and Preservation, 2014, 38, 406-412.	2.0	5
68	Assessment of efflux-mediated antibiotic-resistant Salmonella enterica serovar Typhimurium under simulated gastrointestinal conditions. Annals of Microbiology, 2014, 64, 581-587.	2.6	3
69	Effect of bacteriophage on the susceptibility, motility, invasion, and survival of Salmonella Typhimurium exposed to the simulated intestinal conditions. Archives of Microbiology, 2014, 196, 201-208.	2.2	0
70	Influence of bacteriophage P22 on the inflammatory mediator gene expression in chicken macrophage HD11 cells infected with <i>Salmonella</i> Typhimurium. FEMS Microbiology Letters, 2014, 352, 11-17.	1.8	11
71	Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Archives of Microbiology, 2014, 196, 719-727.	2.2	14
72	Survival, prophage induction, and invasive properties of lysogenic Salmonella Typhimurium exposed to simulated gastrointestinal conditions. Archives of Microbiology, 2014, 196, 655-659.	2.2	19

#	ARTICLE	IF	CITATIONS
73	Assessment of conjugal transfer of antibiotic resistance genes in Salmonella Typhimurium exposed to bile salts. Journal of Microbiology, 2014, 52, 716-719.	2.8	6
74	Physiochemical and molecular properties of antimicrobial-exposed Staphylococcus aureus during the planktonic-to-biofilm transition. Annals of Microbiology, 2013, 63, 1213-1217.	2.6	3
75	Effect of high hydrostatic pressure on the quality-related properties of carrot and spinach. Food Science and Biotechnology, 2013, 22, 189-195.	2.6	19
76	Enhanced antimicrobial activity of nisin in combination with allyl isothiocyanate against <i><scp>L</scp>isteria monocytogenes</i> , <i><scp>S</scp>taphylococcus aureus</i> , <i><scp>S</scp>almonella Typhimurium</i> and <i><scp>S</scp>higella boydii</i> . International Journal of Food Science and Technology, 2013, 48, 324-333.	2.7	30
77	Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Letters in Applied Microbiology, 2013, 56, 307-313.	2.2	92
78	Assessment of pressure-induced inactivation of Listeria monocytogenes exposed to low pHs. Food Science and Biotechnology, 2013, 22, 99-105.	2.6	13
79	In Vitro Assessment of the Susceptibility of Planktonic and Attached Cells of Foodborne Pathogens to Bacteriophage P22-Mediated Salmonella Lysates. Journal of Food Protection, 2013, 76, 2057-2062.	1.7	12
80	Effects of Bile Salt Deconjugation by Probiotic Strains on the Survival of Antibiotic-Resistant Foodborne Pathogens under Simulated Gastric Conditions. Journal of Food Protection, 2012, 75, 1090-1098.	1.7	11
81	Cellular and molecular responses of Salmonella Typhimurium to antimicrobial-induced stresses during the planktonic-to-biofilm transition. Letters in Applied Microbiology, 2012, 55, 274-282.	2.2	30
82	Antioxidant, antibiofilm, and anticholinesterase activities of fermented Deodeok (Codonopsis) Tj ETQq0 0 0 rgB1	- /Qverlock 2.6	10 Tf 50 382
83	Enhancement of the Cognitive Effects of γ-Aminobutyric Acid from Monosodium Glutamate Fermentation by <i>Lactobacillus sakei</i> B2-16. Food Biotechnology, 2012, 26, 29-44.	1.5	8
84	Effect of high pressure processing on microbiological and physical qualities of carrot and spinach. Food Science and Biotechnology, 2012, 21, 899-904.	2.6	7
85	Enhanced Antimicrobial Activity of Nisin‣oaded Liposomal Nanoparticles against Foodborne Pathogens. Journal of Food Science, 2012, 77, M165-70.	3.1	39
86	BIOCHEMICAL QUALITY ASSESSMENT OF SEMI-DRIED SQUID (TODARODES PACIFICUS) TREATED WITH HIGH HYDROSTATIC PRESSURE. Journal of Food Biochemistry, 2012, 36, 171-178.	2.9	14
87	Quantitation of Surface-bound Proteins on Biochips Using MALDI-TOF MS. Analytical Sciences, 2011, 27, 1127-1131.	1.6	8
88	Survival and virulence properties of multiple antibioticâ€resistant <i>Salmonella</i> Typhimurium under simulated gastrointestinal conditions. International Journal of Food Science and Technology, 2011, 46, 2164-2172.	2.7	6
89	CHARACTERISTICS OF BIOFILM FORMATION BY SELECTED FOODBORNE PATHOGENS. Journal of Food Safety, 2011, 31, 91-97.	2.3	28

90Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant
SalmonellaTyphimurium and Staphylococcus aureus. FEMS Microbiology Letters, 2011, 325, 180-188.1.853

#	Article	IF	CITATIONS
91	Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. Journal of Bioscience and Bioengineering, 2011, 112, 188-193.	2.2	29
92	Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Science and Biotechnology, 2011, 20, 283-287.	2.6	34
93	Effects of pressure level and processing time on the extraction of total phenols, flavonoids, and phenolic acids from Deodeok (Codonopsis lanceolata). Food Science and Biotechnology, 2011, 20, 499-505.	2.6	18
94	Effects of nisin and acid on the inactivation and recovery of Listeria monocytogenes biofilms treated by high hydrostatic pressure. Food Science and Biotechnology, 2011, 20, 1361-1366.	2.6	10
95	The Effect of Ultrasonificated Extracts of Spirulina maxima on the Anticancer Activity. Marine Biotechnology, 2011, 13, 205-214.	2.4	52
96	Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp Biotechnology and Bioprocess Engineering, 2011, 16, 946-955.	2.6	20
97	Effect of High Pressure Processing on the Shelf Life of Seasoned Squid. Journal of the Korean Society of Food Science and Nutrition, 2011, 40, 1136-1140.	0.9	8
98	In vitro Antioxidant Potential and Oxidative DNA Damage Protecting Activity of the Ethanol Extracts of Cacalia firma Komar. Journal of Applied Biological Chemistry, 2011, 54, 258-264.	0.4	4
99	Analysis of Chemical Compositions and Electron-Donating Ability of 4 Korean Wild Sannamuls. Korean Journal of Medicinal Crop Science, 2011, 19, 111-116.	0.4	18
100	Enhancement of Antioxidant Activities and Whitening Effect of Acer mono Sap Through Nano Encapsulation Processes. Korean Journal of Medicinal Crop Science, 2011, 19, 191-197.	0.4	8
101	Enhancement of Whitening Effects of Lithospermum erythrorhizon Extracts by Ultra High Pressure. Korean Journal of Medicinal Crop Science, 2011, 19, 97-102.	0.4	2
102	Application of high pressure processing for extending the shelf-life of sliced raw squid. Food Science and Biotechnology, 2010, 19, 923-927.	2.6	16
103	Enhancement of pheochromocytoma nerve cell growth by consecutive fractionization of Angelica gigas Nakai extracts. Cytotechnology, 2010, 62, 461-472.	1.6	5
104	Enhancement of antimicrobial and antimutagenic activities of Korean barberry (<i>Berberis) Tj ETQq0 0 0 rgBT /Ov Journal of the Science of Food and Agriculture, 2010, 90, 2399-2404.</i>	verlock 10 3.5	Tf 50 227 ⁻ 19
105	Effect of high pressure processing on the quality of squid (Todarodes pacificus) during refrigerated storage. Food Chemistry, 2010, 119, 471-476.	8.2	57
106	Dimethylamine, Trimethylamine, and Biogenic Amine Formation in Highâ€Pressure Processed Semidried Squid (<i>Todarodes pacificius</i>) during Refrigerated Storage. Journal of Food Science, 2010, 75, M489-95.	3.1	19
107	Effect of NaCl on the Biofilm Formation by Foodborne Pathogens. Journal of Food Science, 2010, 75, M580-5.	3.1	72
108	Inactivation Kinetics and Virulence Potential of Salmonella Typhimurium and Listeria monocytogenes Treated by Combined High Pressure and Nisin. Journal of Food Protection, 2010, 73, 2203-2210.	1.7	16

#	Article	IF	CITATIONS
109	Growth and Virulence Properties of Biofilm-Forming <i>Salmonellaenterica</i> Serovar Typhimurium under Different Acidic Conditions. Applied and Environmental Microbiology, 2010, 76, 7910-7917.	3.1	38
110	Combined Effects of Probiotic Fermentation and High-Pressure Extraction on the Antioxidant, Antimicrobial, and Antimutagenic Activities of Deodeok (<i>Codonopsis lanceolata</i>). Journal of Agricultural and Food Chemistry, 2010, 58, 1719-1725.	5.2	36
111	Effect of isothiocyanates from horseradish (Armoracia rusticana) on the quality and shelf life of tofu. Food Control, 2010, 21, 1081-1086.	5.5	27
112	The Effect of Fermented Codonopsis lanceolata on the Memory Impairment of Mice. Journal of the Korean Society of Food Science and Nutrition, 2010, 39, 1691-1694.	0.9	7
113	Enhancement of Antioxidant Activities of Codonopsis lanceolata and Fermented Codonopsis lanceolata by Ultra High Pressure Extraction. Journal of the Korean Society of Food Science and Nutrition, 2010, 39, 1898-1902.	0.9	20
114	Influence of Pressurization Rate and Pressure Pulsing on the Inactivation of Bacillus amyloliquefaciens Spores during Pressure-Assisted Thermal Processing. Journal of Food Protection, 2009, 72, 775-782.	1.7	48
115	Effect of different extraction protocols on anticancer and antioxidant activities of Berberis koreana bark extracts. Journal of Bioscience and Bioengineering, 2009, 107, 331-338.	2.2	46
116	Synergistic Effect of Electrolyzed Water and Citric Acid Against <i>Bacillus Cereus</i> Cells and Spores on Cereal Grains. Journal of Food Science, 2009, 74, M185-9.	3.1	33
117	Kinetic evaluation of physiological heterogeneity in bacterial spores during thermal inactivation. Journal of General and Applied Microbiology, 2009, 55, 295-299.	0.7	8
118	Cross-protective effect of acid-adapted <i>Salmonella enterica</i> on resistance to lethal acid and cold stress conditions. Letters in Applied Microbiology, 2008, 47, 290-297.	2.2	42
119	Monitoring Biochemical Changes in Bacterial Spore during Thermal and Pressure-Assisted Thermal Processing using FT-IR Spectroscopy. Journal of Agricultural and Food Chemistry, 2007, 55, 9311-9317.	5.2	40
120	Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiology, 2007, 24, 7-14.	4.2	400
121	Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 2007, 113, 321-329.	4.7	159
122	Food Safety Engineering. , 2007, , 45-69.		0
123	Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Journal of Microbiology and Biotechnology, 2007, 17, 524-9.	2.1	8
124	Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. Journal of Microbiology and Biotechnology, 2007, 17, 616-23.	2.1	13
125	Determination of Spore Inactivation during Thermal and Pressure-Assisted Thermal Processing Using FT-IR Spectroscopy. Journal of Agricultural and Food Chemistry, 2006, 54, 10300-10306.	5.2	34
126	Combined Pressure-Thermal Inactivation Kinetics of Bacillus amyloliquefaciens Spores in Egg Patty Mince. Journal of Food Protection, 2006, 69, 853-860.	1.7	116

Juhee Ahn

#	Article	IF	CITATIONS
127	Heterocyclic Amines: 1. Kinetics of Formation of Polar and Nonpolar Heterocyclic Amines as a Function of Time and Temperature. Journal of Food Science, 2005, 70, C173-C179.	3.1	40
128	Heterocyclic Amines: 2. Inhibitory Effects of Natural Extracts on the Formation of Polar and Nonpolar Heterocyclic Amines in Cooked Beef. Journal of Food Science, 2005, 70, C263-C268.	3.1	56
129	Antimicrobial and Antioxidant Activities of Natural Extracts In Vitro and in Ground Beef. Journal of Food Protection, 2004, 67, 148-155.	1.7	163
130	Antioxidant Properties of Natural Plant Extracts Containing Polyphenolic Compounds in Cooked Ground Beef. Journal of Food Science, 2002, 67, 1364-1369.	3.1	204