Ivan Rusyn

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2079279/ivan-rusyn-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 251
 18,295
 60
 131

 papers
 citations
 h-index
 g-index

 267
 22,485
 6
 6.31

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
251	Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. <i>Mutation Research - Reviews in Mutation Research</i> , 2022 , 789, 108408	7	2
250	Characterization of Compositional Variability in Petroleum Substances Fuel, 2022, 317, 123547-123547	7 7.1	O
249	A tiered approach to population-based in vitro testing for cardiotoxicity: Balancing estimates of potency and variability <i>Journal of Pharmacological and Toxicological Methods</i> , 2022 , 114, 107154	1.7	1
248	Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. <i>Journal of Hazardous Materials</i> , 2022 , 422, 126759	12.8	4
247	Analysis of per- and polyfluoroalkyl substances in Houston Ship Channel and Galveston Bay following a large-scale industrial fire using ion-mobility-spectrometry-mass spectrometry <i>Journal of Environmental Sciences</i> , 2022 , 115, 350-362	6.4	3
246	Non-Alcoholic fatty liver disease-associated DNA methylation and gene expression alterations in the livers of Collaborative Cross mice fed an obesogenic high-fat and high-sucrose diet <i>Epigenetics</i> , 2022 , 1-15	5.7	О
245	Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice <i>Regulatory Toxicology and Pharmacology</i> , 2022 , 105171	3.4	
244	Model systems and organisms for addressing inter- and intra-species variability in risk assessment. <i>Regulatory Toxicology and Pharmacology</i> , 2022 , 132, 105197	3.4	1
243	Grouping of UVCB substances with new approach methodologies (NAMs) data. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2021 , 38, 123-137	4.3	3
242	Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene. <i>Chemical Research in Toxicology</i> , 2021 , 34, 2375-2383	4	3
241	Emerging technologies and their impact on regulatory science. <i>Experimental Biology and Medicine</i> , 2021 , 15353702211052280	3.7	3
240	Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 1	4.4	1
239	Quantitative NanoLC/NSI-HRMS Method for 1,3-Butadiene Induced -N7-guanine DNA-DNA Cross-Links in Urine. <i>Toxics</i> , 2021 , 9,	4.7	1
238	Risk Characterization of Environmental Samples Using In Vitro Bioactivity and Polycyclic Aromatic Hydrocarbon Concentrations Data. <i>Toxicological Sciences</i> , 2021 , 179, 108-120	4.4	5
237	Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. <i>Food and Chemical Toxicology</i> , 2021 , 149, 111979	4.7	2
236	Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2021 , 17, 887-902	5.5	6
235	Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124425	12.8	4

(2020-2021)

234	of contaminant distribution and potential human health risks. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2021 , 31, 810-822	6.7	4
233	Curated Data In - Trustworthy Models Out: The Impact of Data Quality on the Reliability of Artificial Intelligence Models as Alternatives to Animal Testing. <i>ATLA Alternatives To Laboratory Animals</i> , 2021 , 49, 73-82	2.1	6
232	Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. <i>Toxicological Sciences</i> , 2021 , 182, 168-182	4.4	3
231	Spatial and temporal distribution of surface water contaminants in the Houston Ship Channel after the Intercontinental Terminal Company Fire. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2021 , 31, 887-899	6.7	1
230	Quantitative In Vitro-to-In Vivo Extrapolation for Mixtures: A Case Study of Superfund Priority List Pesticides. <i>Toxicological Sciences</i> , 2021 , 183, 60-69	4.4	2
229	Data Processing Workflow to Identify Structurally Related Compounds in Petroleum Substances Using Ion Mobility Spectrometry-Mass Spectrometry. <i>Energy & Energy & Ene</i>	4.1	1
228	Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). <i>Toxicology</i> , 2021 , 448, 152651	4.4	9
227	A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1034-1049	3.8	5
226	The COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring County-Level Vulnerability Using Visualization, Statistical Modeling, and Machine Learning. <i>Environmental Health Perspectives</i> , 2021 , 129, 17701	8.4	27
225	Risk Characterization and Probabilistic Concentration-Response Modeling of Complex Environmental Mixtures Using New Approach Methodologies (NAMs) Data from Organotypic Human Stem Cell Assays. <i>Environmental Health Perspectives</i> , 2021 , 129, 17004	8.4	10
224	Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. <i>Hepatology</i> , 2021 , 74, 3486-3496	11.2	8
223	The DEN and CCl -Induced Mouse Model of Fibrosis and Inflammation-Associated Hepatocellular Carcinoma. <i>Current Protocols</i> , 2021 , 1, e211		1
222	Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. <i>Chemical Research in Toxicology</i> , 2021 , 34, 2110-2124	4	1
221	Heart Muscle Microphysiological System for Cardiac Liability Prediction of Repurposed COVID-19 Therapeutics. <i>Frontiers in Pharmacology</i> , 2021 , 12, 684252	5.6	3
220	A new approach method for characterizing inter-species toxicodynamic variability. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2021 , 84, 1020-1039	3.2	1
219	Prediction of hepatic drug clearance with a human microfluidic four-cell liver acinus microphysiology system. <i>Toxicology</i> , 2021 , 463, 152954	4.4	1
218	Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident. <i>Environmental Pollution</i> , 2020 , 265, 115009	9.3	11
217	Questioning Existing Cancer Hazard Evaluation Standards in the Name of Statistics. <i>Toxicological Sciences</i> , 2020 , 177, 521-522	4.4	2

216	In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. <i>Toxicological Sciences</i> , 2020 , 174, 168-177	4.4	6
215	Tissue-Engineered Bone Tumor as a Reproducible Human in Vitro Model for Studies of Anticancer Drugs. <i>Toxicological Sciences</i> , 2020 , 173, 65-76	4.4	5
214	Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. <i>Journal of Clinical Investigation</i> , 2020 , 130, 2129-2145	15.9	19
213	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. <i>PLoS Genetics</i> , 2020 , 16, e1008537	6	12
212	Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2020 , 37, 365-394	4.3	66
211	Rapid hazard characterization of environmental chemicals using a compendium of human cell lines from different organs. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2020 , 37, 623-638	4.3	12
2 10	PBPK modeling of impact of nonalcoholic fatty liver disease on toxicokinetics of perchloroethylene in mice. <i>Toxicology and Applied Pharmacology</i> , 2020 , 400, 115069	4.6	4
209	The COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring county-level vulnerability using visualization, statistical modeling, and machine learning 2020 ,		3
208	A Novel Mouse Model of Acute-on-Chronic Cholestatic Alcoholic Liver Disease: A Systems Biology Comparison With Human Alcoholic Hepatitis. <i>Alcoholism: Clinical and Experimental Research</i> , 2020 , 44, 87-101	3.7	1
207	An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction. <i>Environment International</i> , 2020 , 134, 105280	12.9	26
206	Predicting tubular reabsorption with a human kidney proximal tubule tissue-on-a-chip and physiologically-based modeling. <i>Toxicology in Vitro</i> , 2020 , 63, 104752	3.6	15
205	Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. <i>Toxicology</i> , 2020 , 445, 152601	4.4	10
204	Rapid Characterization of Emerging Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams Using Ion Mobility Spectrometry-Mass Spectrometry. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 15024-15034	10.3	11
203	Cardiovascular Effects of Polychlorinated Biphenyls and Their Major Metabolites. <i>Environmental Health Perspectives</i> , 2020 , 128, 77008	8.4	15
202	A Bayesian Method for Population-wide Cardiotoxicity Hazard and Risk Characterization Using an In Vitro Human Model. <i>Toxicological Sciences</i> , 2020 , 178, 391-403	4.4	7
201	Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. <i>Scientific Reports</i> , 2020 , 10, 15558	4.9	5
200	Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. <i>Journal of Nutritional Biochemistry</i> , 2020 , 86, 108496	6.3	4
199	Characterization of the variability in the extent of nonalcoholic fatty liver induced by a high-fat diet in the genetically diverse Collaborative Cross mouse model. <i>FASEB Journal</i> , 2020 , 34, 7773-7785	0.9	7

198	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation 2020 , 16, e1008537		
197	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation 2020 , 16, e1008537		
196	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation 2020 , 16, e1008537		
195	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation 2020 , 16, e1008537		
194	Multi-dimensional in vitro bioactivity profiling for grouping of glycol ethers. <i>Regulatory Toxicology and Pharmacology</i> , 2019 , 101, 91-102	3.4	6
193	Comparative analysis of Rapid Equilibrium Dialysis (RED) and solid phase micro-extraction (SPME) methods for In Vitro-In Vivo extrapolation of environmental chemicals. <i>Toxicology in Vitro</i> , 2019 , 60, 245	5 ⁻³ 2 ⁶ 51	10
192	Gene Expression and DNA Methylation Alterations in the Glycine N-Methyltransferase Gene in Diet-Induced Nonalcoholic Fatty Liver Disease-Associated Carcinogenesis. <i>Toxicological Sciences</i> , 2019 , 170, 273-282	4.4	20
191	Population-Based Analysis of DNA Damage and Epigenetic Effects of 1,3-Butadiene in the Mouse. <i>Chemical Research in Toxicology</i> , 2019 , 32, 887-898	4	9
190	Long-Term Combinatorial Exposure to Trichloroethylene and Inorganic Arsenic in Genetically Heterogeneous Mice Results in Renal Tubular Damage and Cancer-Associated Molecular Changes. <i>G3: Genes, Genomes, Genetics</i> , 2019 , 9, 1729-1737	3.2	3
189	Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. <i>Toxicology and Applied Pharmacology</i> , 2019 , 381, 114711	4.6	25
188	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. <i>Nature Communications</i> , 2019 , 10, 3126	17.4	46
187	Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene. <i>Environmental Health Perspectives</i> , 2019 , 127, 67011	8.4	8
186	Grouping of complex substances using analytical chemistry data: A framework for quantitative evaluation and visualization. <i>PLoS ONE</i> , 2019 , 14, e0223517	3.7	12
185	Baseline data for distribution of contaminants by natural disasters: results from a residential Houston neighborhood during Hurricane Harvey flooding. <i>Heliyon</i> , 2019 , 5, e02860	3.6	13
184	Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice. <i>Toxicological Sciences</i> , 2019 , 167, 126-137	4.4	5
183	Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues. <i>Archives of Toxicology</i> , 2019 , 93, 791-800	5.8	9
182	Thorough QT/QTc in a Dish: An In Vitro Human Model That Accurately Predicts Clinical Concentration-QTc Relationships. <i>Clinical Pharmacology and Therapeutics</i> , 2019 , 105, 1175-1186	6.1	16
181	Histopathological and Molecular Signatures of a Mouse Model of Acute-on-Chronic Alcoholic Liver Injury Demonstrate Concordance With Human Alcoholic Hepatitis. <i>Toxicological Sciences</i> , 2019 , 170, 427	7-4 13 7	7

180	Oy Vey! A Comment on "Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships Outperforming Animal Test Reproducibility". <i>Toxicological Sciences</i> , 2019 , 167, 3-4	4.4	11	
179	Tissue- and strain-specific effects of a genotoxic carcinogen 1,3-butadiene on chromatin and transcription. <i>Mammalian Genome</i> , 2018 , 29, 153-167	3.2	17	
178	Population-based dose-response analysis of liver transcriptional response to trichloroethylene in mouse. <i>Mammalian Genome</i> , 2018 , 29, 168-181	3.2	12	
177	Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities. <i>Mammalian Genome</i> , 2018 , 29, 182-189	3.2	20	
176	ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models. <i>BMC Bioinformatics</i> , 2018 , 19, 80	3.6	50	
175	Application of the key characteristics of carcinogens in cancer hazard identification. <i>Carcinogenesis</i> , 2018 , 39, 614-622	4.6	64	
174	Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. <i>Toxicology</i> , 2018 , 409, 33-43	4.4	9	
173	Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 421-426	0.6	7	
172	Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice. <i>Toxicological Sciences</i> , 2018 , 164, 489-500	4.4	17	
171	High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts. <i>Assay and Drug Development Technologies</i> , 2018 , 16, 333-342	2.1	7	
170	Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. <i>Toxicology and Applied Pharmacology</i> , 2018 , 352, 142-152	4.6	6	
169	gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 2559-2562	3.2	8	
168	Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2018 , 35, 51-64	4.3	47	
167	A human population-based organotypic in vitro model for cardiotoxicity screening. <i>ALTEX:</i> Alternatives To Animal Experimentation, 2018 , 35, 441-452	4.3	25	
166	Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. <i>Toxicology and Applied Pharmacology</i> , 2018 , 339, 1-9	4.6	18	
165	Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2018 , 81, 37-52	3.2	18	
164	Epigenetically mediated inhibition of S-adenosylhomocysteine hydrolase and the associated dysregulation of 1-carbon metabolism in nonalcoholic steatohepatitis and hepatocellular carcinoma. <i>FASEB Journal</i> , 2018 , 32, 1591-1601	0.9	17	
163	Software Tools to Facilitate Systematic Review Used for Cancer Hazard Identification. Environmental Health Perspectives, 2018 , 126, 104501	8.4	28	

162	Technology Transfer of the Microphysiological Systems: A Case Study of the Human Proximal Tubule Tissue Chip. <i>Scientific Reports</i> , 2018 , 8, 14882	4.9	40	
161	Conditional Toxicity Value (CTV) Predictor: An Approach for Generating Quantitative Risk Estimates for Chemicals. <i>Environmental Health Perspectives</i> , 2018 , 126, 057008	8.4	30	
160	Chemistry-Wide Association Studies (CWAS): A Novel Framework for Identifying and Interpreting Structure-Activity Relationships. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 2203-2213	6.1	4	
159	Re: Application of the key characteristics of carcinogens in cancer hazard evaluation Qresponse to Goodman, Lynch and Rhomberg. <i>Carcinogenesis</i> , 2018 , 39, 1091-1093	4.6	3	
158	The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives. <i>Toxicological Sciences</i> , 2018 , 161, 276-284	4.4	9	
157	An empirical Bayes approach for multiple tissue eQTL analysis. <i>Biostatistics</i> , 2018 , 19, 391-406	3.7	23	
156	Impact of Nonalcoholic Fatty Liver Disease on Toxicokinetics of Tetrachloroethylene in Mice. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2017 , 361, 17-28	4.7	17	
155	In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. <i>Toxicology and Applied Pharmacology</i> , 2017 , 322, 60-74	4.6	45	
154	Grouping of Petroleum Substances as Example UVCBs by Ion Mobility-Mass Spectrometry to Enable Chemical Composition-Based Read-Across. <i>Environmental Science & Environmental S</i>	o ^{70.3}	16	
153	Nonalcoholic Fatty Liver Disease Is a Susceptibility Factor for Perchloroethylene-Induced Liver Effects in Mice. <i>Toxicological Sciences</i> , 2017 , 159, 102-113	4.4	12	
152	Editor Highlight: Collaborative Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicokinetics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its Oxidative Metabolism. <i>Toxicological Sciences</i> , 2017 , 158, 48-62	4.4	27	
151	miR-1247 blocks SOX9-mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. <i>Toxicology</i> , 2017 , 384, 40-49	4.4	10	
150	Genetic and epigenetic determinants of inter-individual variability in responses to toxicants. <i>Current Opinion in Toxicology</i> , 2017 , 6, 50-59	4.4	9	
149	Characterization of Variability in Toxicokinetics and Toxicodynamics of Tetrachloroethylene Using the Collaborative Cross Mouse Population. <i>Environmental Health Perspectives</i> , 2017 , 125, 057006	8.4	30	
148	Variation in DNA-Damage Responses to an Inhalational Carcinogen (1,3-Butadiene) in Relation to Strain-Specific Differences in Chromatin Accessibility and Gene Transcription Profiles in C57BL/6J and CAST/EiJ Mice. <i>Environmental Health Perspectives</i> , 2017 , 125, 107006	8.4	17	
147	Editor@ Highlight: Comparative Dose-Response Analysis of Liver and Kidney Transcriptomic Effects of Trichloroethylene and Tetrachloroethylene in B6C3F1 Mouse. <i>Toxicological Sciences</i> , 2017 , 160, 95-1	1 0 .4	16	
146	High-Content Assay Multiplexing for Vascular Toxicity Screening in Induced Pluripotent Stem Cell-Derived Endothelial Cells and Human Umbilical Vein Endothelial Cells. <i>Assay and Drug Development Technologies</i> , 2017 , 15, 267-279	2.1	18	
145	Simultaneous detection of the tetrachloroethylene metabolites S-(1,2,2-trichlorovinyl) glutathione, S-(1,2,2-trichlorovinyl)-L-cysteine, and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine in multiple mouse	3.2	14	

144	Editorial overview of the special issue on genomic toxicology epigenetics. <i>Current Opinion in Toxicology</i> , 2017 , 6, i-iii	4.4	1
143	A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics. <i>Frontiers in Genetics</i> , 2017 , 8, 168	4.5	25
142	A tiered, Bayesian approach to estimating of population variability for regulatory decision-making. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2017 , 34, 377-388	4.3	27
141	MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. <i>Oncotarget</i> , 2017 , 8, 88517-88528	3.3	36
140	A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways. <i>Toxicology and Applied Pharmacology</i> , 2016 , 310, 129-139	4.6	13
139	Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2016 , 359, 110-23	4.7	46
138	Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform. <i>Analytical Chemistry</i> , 2016 , 88, 12152-12160	7.8	40
137	Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. <i>Inhalation Toxicology</i> , 2016 , 28, 251-9	2.7	34
136	The role of microRNAs in the development and progression of chemical-associated cancers. <i>Toxicology and Applied Pharmacology</i> , 2016 , 312, 3-10	4.6	16
135	Environmental exposures due to natural disasters. <i>Reviews on Environmental Health</i> , 2016 , 31, 89-92	3.8	17
134	Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2016 , 23, 968-78	8.6	11
133	Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. <i>Environmental Health Perspectives</i> , 2016 , 124, 713-21	8.4	290
132	The Next Generation of Risk Assessment Multi-Year Study-Highlights of Findings, Applications to Risk Assessment, and Future Directions. <i>Environmental Health Perspectives</i> , 2016 , 124, 1671-1682	8.4	59
131	Differentially expressed MicroRNAs provide mechanistic insight into fibrosis-associated liver carcinogenesis in mice. <i>Molecular Carcinogenesis</i> , 2016 , 55, 808-17	5	11
130	Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. <i>Mutation Research - Reviews in Mutation Research</i> , 2016 , 768, 27-45	7	111
129	Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). <i>Journal of Epidemiology and Community Health</i> , 2016 , 70, 741-5	5.1	104
128	A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives. <i>Green Chemistry</i> , 2016 , 18, 4407-4419	10	50
127	Characterization of copy number alterations in a mouse model of fibrosis-associated hepatocellular carcinoma reveals concordance with human disease. <i>Cancer Medicine</i> , 2016 , 5, 574-85	4.8	5

126	IARC monographs: 40 years of evaluating carcinogenic hazards to humans. <i>Environmental Health Perspectives</i> , 2015 , 123, 507-14	8.4	57
125	Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2015 , 78, 15-31	3.2	23
124	Population-based in vitro hazard and concentration-response assessment of chemicals: the 1000 genomes high-throughput screening study. <i>Environmental Health Perspectives</i> , 2015 , 123, 458-66	8.4	64
123	Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. <i>Science</i> , 2015 , 348, 648-60	33.3	3242
122	Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. <i>Science</i> , 2015 , 348, 666-9	33.3	170
121	In vitro screening for population variability in toxicity of pesticide-containing mixtures. <i>Environment International</i> , 2015 , 85, 147-55	12.9	22
120	High-Content Assay Multiplexing for Toxicity Screening in Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Hepatocytes. <i>Assay and Drug Development Technologies</i> , 2015 , 13, 529-46	2.1	86
119	The Contribution of Peroxisome Proliferator-Activated Receptor Alpha to the Relationship Between Toxicokinetics and Toxicodynamics of Trichloroethylene. <i>Toxicological Sciences</i> , 2015 , 147, 339	9 -419	9
118	Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. <i>Environmental Health Perspectives</i> , 2015 , 123, 1232-	40 ⁴	66
117	Prediction of human population responses to toxic compounds by a collaborative competition. <i>Nature Biotechnology</i> , 2015 , 33, 933-40	44.5	70
116	Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2015 , 78, 32-49	3.2	18
115	From "weight of evidence" to quantitative data integration using multicriteria decision analysis and Bayesian methods. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2015 , 32, 3-8	4.3	38
114	High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. <i>Assay and Drug Development Technologies</i> , 2014 , 12, 43-54	2.1	92
113	Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods. <i>Toxicology and Applied Pharmacology</i> , 2014 , 280, 177-89	4.6	23
112	Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. <i>International Journal of Cancer</i> , 2014 , 134, 2778-88	7.5	30
111	Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies?. <i>Cancer Letters</i> , 2014 , 345, 210-5	9.9	39
110	Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. <i>Pharmacology & Therapeutics</i> , 2014 , 141, 55-68	13.9	70
109	Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. <i>Cancer Letters</i> , 2014 , 342, 223-30	9.9	139

108	Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. <i>Environmental Health Perspectives</i> , 2014 , 122, 456-63	8.4	34
107	High-content high-throughput assays for characterizing the viability and morphology of human iPSC-derived neuronal cultures. <i>Assay and Drug Development Technologies</i> , 2014 , 12, 536-47	2.1	46
106	Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. <i>Environmental Health Perspectives</i> , 2014 , 122, 499-505	8.4	69
105	Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice. <i>Toxicological Sciences</i> , 2014 , 142, 375-84	4.4	23
104	The DEN and CCl4 -Induced Mouse Model of Fibrosis and Inflammation-Associated Hepatocellular Carcinoma. <i>Current Protocols in Pharmacology</i> , 2014 , 66, 14.30.1-10	4.1	69
103	Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. <i>Mutation Research - Reviews in Mutation Research</i> , 2014 , 762, 22-36	7	66
102	Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1018-27	4.9	15
101	Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays. <i>Current Topics in Medicinal Chemistry</i> , 2014 , 14, 1356-64	3	14
100	Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline-and folate-deficient diet-induced liver injury. <i>FASEB Journal</i> , 2013 , 27, 2233-43	0.9	23
99	Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR-and structure-based virtual screening approaches. <i>Toxicology and Applied Pharmacology</i> , 2013 , 272, 67-7	∕ \$.6	65
98	Effects of polymorphisms in alcohol metabolism and oxidative stress genes on survival from head and neck cancer. <i>Cancer Epidemiology</i> , 2013 , 37, 479-91	2.8	11
97	Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. <i>Toxicological Sciences</i> , 2013 , 132, 53-63	4.4	66
96	Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. <i>Toxicology and Applied Pharmacology</i> , 2013 , 273, 500-7	4.6	93
95	Alcohol and toxicity. <i>Journal of Hepatology</i> , 2013 , 59, 387-8	13.4	43
94	A systematic approach for identifying and presenting mechanistic evidence in human health assessments. <i>Regulatory Toxicology and Pharmacology</i> , 2013 , 67, 266-77	3.4	12
93	Integrative chemical-biological read-across approach for chemical hazard classification. <i>Chemical Research in Toxicology</i> , 2013 , 26, 1199-208	4	83
92	Reply to: "The autophagic response to alcohol toxicity: the missing layer". <i>Journal of Hepatology</i> , 2013 , 59, 399-400	13.4	2
91	Environmental toxicants, epigenetics, and cancer. <i>Advances in Experimental Medicine and Biology</i> , 2013 , 754, 215-32	3.6	87

(2011-2013)

90	Acetaminophen-induced acute liver injury in HCV transgenic mice. <i>Toxicology and Applied Pharmacology</i> , 2013 , 266, 224-32	4.6	8
89	models for liver toxicity testing. <i>Toxicology Research</i> , 2013 , 2, 23-39	2.6	304
88	Addressing human variability in next-generation human health risk assessments of environmental chemicals. <i>Environmental Health Perspectives</i> , 2013 , 121, 23-31	8.4	87
87	ToxPi GUI: an interactive visualization tool for transparent integration of data from diverse sources of evidence. <i>Bioinformatics</i> , 2013 , 29, 402-3	7.2	60
86	The Genotype-Tissue Expression (GTEx) project. <i>Nature Genetics</i> , 2013 , 45, 580-5	36.3	4179
85	Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. <i>Journal of Biomolecular Screening</i> , 2013 , 18, 39-53		106
84	Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. <i>Mutation Research - Reviews in Mutation Research</i> , 2012 , 750, 141-158	7	86
83	Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. <i>Toxicology and Applied Pharmacology</i> , 2012 , 262, 52-9	4.6	89
82	Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice. <i>International Journal of Cancer</i> , 2012 , 130, 1347-56	7.5	27
81	Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. <i>Toxicological Sciences</i> , 2012 , 127, 1-9	4.4	57
80	Computational tools for discovery and interpretation of expression quantitative trait loci. <i>Pharmacogenomics</i> , 2012 , 13, 343-52	2.6	15
79	Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. <i>Hepatology</i> , 2012 , 56, 130-9	11.2	45
78	Conducting environmental health research in the Arabian Middle East: lessons learned and opportunities. <i>Environmental Health Perspectives</i> , 2012 , 120, 632-6	8.4	8
77	Indoor air pollutants and health in the United Arab Emirates. <i>Environmental Health Perspectives</i> , 2012 , 120, 687-94	8.4	68
76	Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. <i>FASEB Journal</i> , 2012 , 26, 4592-602	0.9	39
75	Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model. <i>Toxicological Sciences</i> , 2012 , 126, 578-88	4.4	35
74	Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. <i>Chemical Research in Toxicology</i> , 2011 , 24, 1251-62	4	156
73	Chronic administration of ethanol leads to an increased incidence of hepatocellular adenoma by promoting H-ras-mutated cells. <i>Cancer Letters</i> , 2011 , 301, 161-7	9.9	7

72	MicroRNA expression in the livers of inbred mice. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2011 , 714, 126-33	3.3	14
71	Interstrain differences in the liver effects of trichloroethylene in a multistrain panel of inbred mice. <i>Toxicological Sciences</i> , 2011 , 120, 206-17	4.4	46
70	Joint effects of alcohol consumption and polymorphisms in alcohol and oxidative stress metabolism genes on risk of head and neck cancer. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2011 , 20, 2438-49	4	21
69	In vitro screening for population variability in chemical toxicity. <i>Toxicological Sciences</i> , 2011 , 119, 398-4	07.4	31
68	Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. <i>Environmental Health Perspectives</i> , 2011 , 119, 635-40	8.4	38
67	Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. <i>Toxicological Sciences</i> , 2011 , 122, 448-56	4.4	44
66	Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. <i>Environmental Health Perspectives</i> , 2011 , 119, 364-70	8.4	88
65	Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. <i>Laboratory Investigation</i> , 2010 , 90, 1437-46	5.9	149
64	Spectrum of HNF1A somatic mutations in hepatocellular adenoma differs from that in patients with MODY3 and suggests genotoxic damage. <i>Diabetes</i> , 2010 , 59, 1836-44	0.9	46
63	Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors. <i>Toxicological Sciences</i> , 2010 , 115, 131-9	4.4	26
62	Dietary methyl deficiency, microRNA expression and susceptibility to liver carcinogenesis. <i>Journal of Nutrigenetics and Nutrigenomics</i> , 2010 , 3, 259-66		7
61	Sex-specific gene expression in the BXD mouse liver. <i>Physiological Genomics</i> , 2010 , 42, 456-68	3.6	24
60	Toxicogenetics: population-based testing of drug and chemical safety in mouse models. <i>Pharmacogenomics</i> , 2010 , 11, 1127-36	2.6	41
59	Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. <i>Molecular Cancer</i> , 2010 , 9, 74	42.1	61
58	Adiponectin lowers glucose production by increasing SOGA. <i>American Journal of Pathology</i> , 2010 , 177, 1936-45	5.8	27
57	Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method. <i>Chemical Research in Toxicology</i> , 2010 , 23, 724-32	4	88
56	Dietary methyl deficiency, microRNA expression and susceptibility to liver carcinogenesis. <i>World Review of Nutrition and Dietetics</i> , 2010 , 101, 123-130	0.2	8
55	Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2010 , 692, 26-33	3.3	39

(2008-2010)

54	Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity. <i>Toxicology and Applied Pharmacology</i> , 2010 , 249, 208-16	4.6	21
53	Heading down the wrong pathway: on the influence of correlation within gene sets. <i>BMC Genomics</i> , 2010 , 11, 574	4.5	53
52	A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. <i>Environmental Health Perspectives</i> , 2009 , 117, 1257-64	8.4	55
51	FastMap: fast eQTL mapping in homozygous populations. <i>Bioinformatics</i> , 2009 , 25, 482-9	7.2	32
50	SAFEGUI: resampling-based tests of categorical significance in gene expression data made easy. <i>Bioinformatics</i> , 2009 , 25, 541-2	7.2	3
49	Time-course comparison of xenobiotic activators of CAR and PPARalpha in mouse liver. <i>Toxicology and Applied Pharmacology</i> , 2009 , 235, 199-207	4.6	24
48	Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. <i>Toxicology and Applied Pharmacology</i> , 2009 , 238, 90-9	4.6	33
47	Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. <i>Toxicology</i> , 2009 , 262, 230-8	4.4	31
46	Replication and narrowing of gene expression quantitative trait loci using inbred mice. <i>Mammalian Genome</i> , 2009 , 20, 437-46	3.2	16
45	Population-based discovery of toxicogenomics biomarkers for hepatotoxicity using a laboratory strain diversity panel. <i>Toxicological Sciences</i> , 2009 , 110, 235-43	4.4	83
44	Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. <i>Journal of Hepatology</i> , 2009 , 51, 176-86	13.4	143
43	Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. <i>Genome Research</i> , 2009 , 19, 1507-15	9.7	152
42	Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease. <i>Toxicology and Applied Pharmacology</i> , 2008 , 232, 236-43	4.6	61
41	Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2008 , 644, 17-23	3.3	45
40	Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2008 , 4, 1379-89	5.5	46
39	Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. <i>Environmental Health Perspectives</i> , 2008 , 116, 506-13	8.4	72
38	Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. <i>Metabolomics</i> , 2008 , 4, 128-140	4.7	128
37	Protective effect of Juzen-taiho-to on hepatocarcinogenesis is mediated through the inhibition of Kupffer cell-induced oxidative stress. <i>International Journal of Cancer</i> , 2008 , 123, 2503-11	7.5	62

36	Epigenetic aspects of genotoxic and non-genotoxic hepatocarcinogenesis: studies in rodents. <i>Environmental and Molecular Mutagenesis</i> , 2008 , 49, 9-15	3.2	44
35	Supporting Computational Systems Science: Genomic Analysis Tool Federations Using Aspects and AOP 2008 , 457-468		1
34	Multicenter study of acetaminophen hepatotoxicity reveals the importance of biological endpoints in genomic analyses. <i>Toxicological Sciences</i> , 2007 , 99, 326-37	4.4	69
33	Transcriptional networks in S. cerevisiae linked to an accumulation of base excision repair intermediates. <i>PLoS ONE</i> , 2007 , 2, e1252	3.7	14
32	Genome-level analysis of genetic regulation of liver gene expression networks. <i>Hepatology</i> , 2007 , 46, 548-57	11.2	44
31	Sustained formation of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-alpha, but not NADPH oxidase. <i>Free Radical Biology and Medicine</i> , 2007 , 42, 335-42	7.8	10
30	Time course investigation of PPARalpha- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression. <i>Toxicology and Applied Pharmacology</i> , 2007 , 225, 267-77	4.6	18
29	Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor alpha. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2007 , 625, 62-71	3.3	36
28	Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus-associated hepatocellular carcinoma. <i>Annals of Surgical Oncology</i> , 2007 , 14, 1182-90	3.1	104
27	Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. <i>Toxicological Sciences</i> , 2007 , 96, 2-15	4.4	236
26	Genomic profiling in nuclear receptor-mediated toxicity. <i>Toxicologic Pathology</i> , 2007 , 35, 474-94	2.1	48
25	Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. <i>Bioinformatics</i> , 2007 , 23, i401-7	7.2	60
24	WY-14,643 induced cell proliferation and oxidative stress in mouse liver are independent of NADPH oxidase. <i>Toxicological Sciences</i> , 2007 , 98, 366-74	4.4	29
23	Mouse liver effects of cyproconazole, a triazole fungicide: role of the constitutive androstane receptor. <i>Toxicological Sciences</i> , 2007 , 99, 315-25	4.4	71
22	Methyl deficiency, alterations in global histone modifications, and carcinogenesis. <i>Journal of Nutrition</i> , 2007 , 137, 216S-222S	4.1	87
21	Phenotypic anchoring of acetaminophen-induced oxidative stress with gene expression profiles in rat liver. <i>Toxicological Sciences</i> , 2006 , 93, 213-22	4.4	72
20	Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. <i>Critical Reviews in Toxicology</i> , 2006 , 36, 459-79	5.7	196
19	Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver. <i>DNA Repair</i> , 2005 , 4, 1099-1	1 0 3	43

(1999-2005)

18	Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. <i>Cancer Letters</i> , 2005 , 229, 1-11	9.9	82
17	Role of peroxisome proliferator-activated receptor-alpha (PPARalpha) in bezafibrate-induced hepatocarcinogenesis and cholestasis. <i>Carcinogenesis</i> , 2005 , 26, 219-27	4.6	102
16	Swift increase in alcohol metabolism (SIAM): understanding the phenomenon of hypermetabolism in liver. <i>Alcohol</i> , 2005 , 35, 13-7	2.7	28
15	Standardizing global gene expression analysis between laboratories and across platforms. <i>Nature Methods</i> , 2005 , 2, 351-6	21.6	365
14	Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. <i>Hepatology</i> , 2005 , 41, 336-44	11.2	128
13	Temporal correlation of pathology and DNA damage with gene expression in a choline-deficient model of rat liver injury. <i>Hepatology</i> , 2005 , 42, 1137-47	11.2	25
12	Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. <i>Cancer Research</i> , 2004 , 64, 1050-7	10.1	86
11	Impaired Ras membrane association and activation in PPARalpha knockout mice after partial hepatectomy. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 284, G302-12	5.1	47
10	The role of Kupffer cell oxidant production in early ethanol-induced liver disease. <i>Free Radical Biology and Medicine</i> , 2001 , 31, 1544-9	7.8	201
9	PPARalpha-dependent induction of liver microsomal esterification of estradiol and testosterone by a prototypical peroxisome proliferator. <i>Endocrinology</i> , 2001 , 142, 3554-7	4.8	11
8	ICAM-1 is involved in the mechanism of alcohol-induced liver injury: studies with knockout mice. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 280, G1289-95	5.1	49
7	Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. <i>Molecular Pharmacology</i> , 2001 , 59, 744-50	4.3	80
6	Role of Kupffer cells and oxidants in signaling peroxisome proliferator-induced hepatocyte proliferation. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2000 , 448, 179-92	3.3	44
5	Development of an intragastric enteral model in the mouse: studies of alcohol-induced liver disease using knockout technology. <i>Journal of Hepato-Biliary-Pancreatic Surgery</i> , 2000 , 7, 395-400		30
4	Peroxisome proliferator-activated receptor alpha is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. <i>Carcinogenesis</i> , 2000 , 21, 823-6	4.6	111
3	Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. <i>Antioxidants and Redox Signaling</i> , 2000 , 2, 607-21	8.4	54
2	NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. <i>Journal of Clinical Investigation</i> , 2000 , 106, 867-72	15.9	378
1	Role of Kupffer cells in peroxisome proliferator-induced hepatocyte proliferation. <i>Drug Metabolism Reviews</i> , 1999 , 31, 87-116	7	38