Jeremy A Gibbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079046/publications.pdf

Version: 2024-02-01

840776 752698 21 433 11 20 citations h-index g-index papers 22 22 22 533 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-Eddy Simulation of the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2020, 177, 541-581.	2.3	63
2	MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows. Geoscientific Model Development, 2017, 10, 3145-3165.	3.6	61
3	Evaluating Weather Research and Forecasting (WRF) Model Predictions of Turbulent Flow Parameters in a Dry Convective Boundary Layer. Journal of Applied Meteorology and Climatology, 2011, 50, 2429-2444.	1.5	49
4	Numerical Study of Nocturnal Low-Level Jets over Gently Sloping Terrain. Journals of the Atmospheric Sciences, 2017, 74, 2813-2834.	1.7	36
5	The Great Plains Low-Level Jet during PECAN: Observed and Simulated Characteristics. Monthly Weather Review, 2019, 147, 1845-1869.	1.4	32
6	Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation. Boundary-Layer Meteorology, 2015, 155, 189-208.	2.3	29
7	Comparison of Convective Boundary Layer Velocity Spectra Retrieved from Large- Eddy-Simulation and Weather Research and Forecasting Model Data. Journal of Applied Meteorology and Climatology, 2014, 53, 377-394.	1.5	27
8	Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar. Boundary-Layer Meteorology, 2015, 155, 417-434.	2.3	23
9	WRF Model Study of the Great Plains Low-Level Jet: Effects of Grid Spacing and Boundary Layer Parameterization. Journal of Applied Meteorology and Climatology, 2018, 57, 2375-2397.	1.5	21
10	Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black successive over relaxation wind-field solver. Environmental Modelling and Software, 2021, 137, 104958.	4.5	16
11	Revisiting Surface Heat-Flux and Temperature Boundary Conditions in Models of Stably Stratified Boundary-Layer Flows. Boundary-Layer Meteorology, 2015, 154, 171-187.	2.3	14
12	A Time Series Sodar Simulator Based on Large-Eddy Simulation. Journal of Atmospheric and Oceanic Technology, 2014, 31, 876-889.	1.3	13
13	Sensitivity of turbulence statistics in the lower portion of a numerically simulated stable boundary layer to parameters of the Deardorff subgrid turbulence model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2205-2213.	2.7	10
14	Assessing Systematic Impacts of PBL Schemes on Storm Evolution in the NOAA Warn-on-Forecast System. Monthly Weather Review, 2020, 148, 2567-2590.	1.4	10
15	Current and Future Uses of UAS for Improved Forecasts/Warnings and Scientific Studies. Bulletin of the American Meteorological Society, 2020, 101, E1322-E1328.	3.3	10
16	QES-Fire: a dynamically coupled fast-response wildfire model. International Journal of Wildland Fire, 2022, 31, 306-325.	2.4	6
17	Comparison of Direct and Spectral Methods for Evaluation of the Temperature Structure Parameter in Numerically Simulated Convective Boundary Layer Flows. Monthly Weather Review, 2016, 144, 2205-2214.	1.4	4
18	Effects of Temporal Discretization on Turbulence Statistics and Spectra in Numerically Simulated Convective Boundary Layers. Boundary-Layer Meteorology, 2014, 153, 19-41.	2.3	3

#	Article	IF	CITATIONS
19	An analytical verification test for numerically simulated convective flow above a thermally heterogeneous surface. Geoscientific Model Development, 2015, 8, 1809-1819.	3.6	1
20	On the Evaluation of the Proportionality Coefficient between the Turbulence Temperature Spectrum and Structure Parameter. Journals of the Atmospheric Sciences, 2020, 77, 2761-2763.	1.7	1
21	Structure Functions and Structure Parameters of Velocity Fluctuations in Numerically Simulated Atmospheric Convective Boundary Layer Flows. Journals of the Atmospheric Sciences, 2020, 77, 3619-3630.	1.7	1