Ioannis K Kookos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2078647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene) Tj ETQq1 1 0.784314 Environment, 2022, 806, 150594.	f rgBT /Ov 3.9	verlock 10 T 29
2	Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresource Technology, 2022, 348, 126295.	4.8	27
3	Increasing the volumetric productivity of fermentative ethanol production using a fed-batch vacuferm process. Biomass Conversion and Biorefinery, 2021, 11, 673-680.	2.9	6
4	Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. Bioresource Technology, 2021, 326, 124711.	4.8	29
5	Bioprocess Development for 2,3-Butanediol Production from Crude Glycerol and Conceptual Process Design for Aqueous Conversion into Methyl Ethyl Ketone. ACS Sustainable Chemistry and Engineering, 2021, 9, 8692-8705.	3.2	8
6	A novel approach to the simultaneous design & control problem. Chemical Engineering Science, 2021, 240, 116637.	1.9	5
7	Life cycle assessment of biobased chemicals from different agricultural feedstocks. Journal of Cleaner Production, 2021, 323, 129201.	4.6	7
8	Algorithmic Approach to the Simultaneous Design and Control Problem. Industrial & Engineering Chemistry Research, 2021, 60, 14271-14281.	1.8	2
9	Hybridised sustainability metrics for use in life cycle assessment of bio-based products: resource efficiency and circularity. Green Chemistry, 2020, 22, 803-813.	4.6	45
10	Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process. Fuel, 2020, 264, 116839.	3.4	32
11	Estimation of volumetric mass transfer coefficient (kLa)—Review of classical approaches and contribution of a novel methodology. Biochemical Engineering Journal, 2020, 155, 107458.	1.8	22
12	A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochemical Engineering Journal, 2020, 154, 107462.	1.8	11
13	Plantwide Control Structure Selection Methodology based on Economics: a Quadratic Approximation. Computer Aided Chemical Engineering, 2020, 48, 1105-1110.	0.3	0
14	Risk assessment modeling of bio-based chemicals economics based on Monte-Carlo simulations. Chemical Engineering Research and Design, 2020, 163, 273-280.	2.7	23
15	A quadratic approximation of the back-off methodology for the control structure selection problem. Computers and Chemical Engineering, 2020, 143, 107114.	2.0	5
16	Strategic planning for chemicals and fuels bioconversion processes. Journal of Chemical Technology and Biotechnology, 2020, 95, 3079-3084.	1.6	2
17	Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology, 2020, 307, 123093.	4.8	104
18	Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochemical Engineering Journal, 2019, 152, 107370.	1.8	31

#	Article	IF	CITATIONS
19	Bioprocess development for (2R,3R)â€butanediol and acetoin production using very high polarity cane sugar and sugarcane molasses by a <i>Bacillus amyloliquefaciens</i> strain. Journal of Chemical Technology and Biotechnology, 2019, 94, 2167-2177.	1.6	20
20	Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, 2019, 209, 666-675.	3.9	40
21	A newly isolated <i>Enterobacter</i> sp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. FEMS Microbiology Letters, 2019, 366, .	0.7	13
22	Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resources, Conservation and Recycling, 2019, 141, 317-328.	5.3	57
23	Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation. Bioresource Technology, 2019, 274, 343-352.	4.8	32
24	Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resources, Conservation and Recycling, 2018, 134, 156-164.	5.3	55
25	TREATMENT OF WASTEWATER WITH HIGH FAT CONTENT EMPLOYING AN ENZYME POOL AND BIOSURFACTANT: TECHNICAL AND ECONOMIC FEASIBILITY. Brazilian Journal of Chemical Engineering, 2018, 35, 531-542.	0.7	17
26	Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochemical Engineering Journal, 2018, 137, 262-272.	1.8	22
27	Conversion of biodieselâ€derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Engineering in Life Sciences, 2017, 17, 262-281.	2.0	84
28	Production of addedâ€value metabolites by <i>Yarrowia lipolytica</i> growing in olive mill wastewaterâ€based media under aseptic and nonâ€aseptic conditions. Engineering in Life Sciences, 2017, 17, 695-709.	2.0	75
29	Optimal design of upstream processes in biotransformation technologies. Bioresource Technology, 2017, 224, 509-514.	4.8	21
30	Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Materials Science and Engineering C, 2017, 71, 214-221.	3.8	25
31	Techno-Economic Evaluation of Refining of Food Supply Chain Wastes for the Production of Chemicals and Biopolymers. , 2017, , 147-164.		2
32	Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production. Journal of Biotechnology, 2016, 233, 95-105.	1.9	34
33	Control structure selection based on economics: Generalization of the backâ€off methodology. AICHE Journal, 2016, 62, 3056-3064.	1.8	29
34	Techno-economic evaluation of wine lees refining for the production of value-added products. Biochemical Engineering Journal, 2016, 116, 157-165.	1.8	46
35	Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food and Bioproducts Processing, 2016, 100, 323-334.	1.8	40
36	A mathematical programming formulation for biorefineries technology selection. Biochemical Engineering Journal, 2016, 116, 135-145.	1.8	10

IOANNIS K KOOKOS

#	Article	IF	CITATIONS
37	Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chemistry, 2016, 198, 85-92.	4.2	34
38	Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. Bioresource Technology, 2016, 204, 55-64.	4.8	96
39	Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Research International, 2015, 73, 81-87.	2.9	83
40	Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly(3-hydroxybutyrate). Industrial Crops and Products, 2015, 71, 106-113.	2.5	45
41	Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel, 2014, 116, 566-577.	3.4	301
42	Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 2014, 43, 2587.	18.7	437
43	Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology, 2014, 189, 36-45.	1.9	91
44	Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co) Tj ETQq0 0 0 rgBT /Overlc Technology, 2014, 172, 121-130.	ock 10 Tf 5 4.8	0 467 Td (-3-1 60
45	Plantwide control structure selection methodology for the benchmark vinyl acetate monomer plant. Computers and Chemical Engineering, 2014, 62, 108-116.	2.0	8
46	Utilisation of By-Products from Sunflower-Based Biodiesel Production Processes for the Production of Fermentation Feedstock. Waste and Biomass Valorization, 2013, 4, 529-537.	1.8	66
47	Plant-wide control structure selection methodology based on economics. Computers and Chemical Engineering, 2013, 52, 240-248.	2.0	23
48	Validation of a solid oxide fuel cell model. , 2012, , .		0
49	On the diffusion in porous electrodes of SOFCs. Chemical Engineering Science, 2012, 69, 571-577.	1.9	15
50	Modelling of low temperature wine-making, using immobilized cells. Food Chemistry, 2012, 133, 1341-1348.	4.2	28
51	Control Structure Selection of an Ideal Reactive Distillation Column. Industrial & Engineering Chemistry Research, 2011, 50, 11193-11200.	1.8	11
52	Classical and alternative fuel mix optimization in cement production using mathematical programming. Fuel, 2011, 90, 1277-1284.	3.4	22
53	An Improved Formulation for the Process Control Structure Selection based on Economics Problem. Computer Aided Chemical Engineering, 2011, , 638-642.	0.3	0
54	Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Processing Technology, 2009, 90, 1023-1031.	3.7	253

IOANNIS K KOOKOS

#	Article	IF	CITATIONS
55	Process Design and Optimization of Novel Wheat-Based Continuous Bioethanol Production System. Biotechnology Progress, 2007, 23, 1394-1403.	1.3	49
56	Optimization and Cost Estimation of Novel Wheat Biorefining for Continuous Production of Fermentation Feedstock. Biotechnology Progress, 2007, 23, 872-880.	1.3	24
57	Optimization and Cost Estimation of Novel Wheat Biorefining for Continuous Production of Fermentation Feedstock. Biotechnology Progress, 2007, 23, 872-880.	1.3	5
58	CALCULATING DYNAMIC DISTURBANCE REJECTION MEASURES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 573-578.	0.4	4
59	PID controller tuning using mathematical programming. Chemical Engineering and Processing: Process Intensification, 2005, 44, 41-49.	1.8	28
60	Real-Time Regulatory Control Structure Selection Based on Economics. Industrial & Engineering Chemistry Research, 2005, 44, 3993-4000.	1.8	12
61	Optimization of batch and fed-batch bioreactors using simulated annealing. Biotechnology Progress, 2004, 20, 1285-1288.	1.3	27
62	On the efficient computation of disturbance rejection measures. Computers and Chemical Engineering, 2003, 27, 95-99.	2.0	7
63	Optimal Operation of Batch Processes under Uncertainty: A Monte Carlo Simulation-Deterministic Optimization Approach. Industrial & amp; Engineering Chemistry Research, 2003, 42, 6815-6822.	1.8	8
64	Optimal Design of Membrane/Distillation Column Hybrid Processes. Industrial & Engineering Chemistry Research, 2003, 42, 1731-1738.	1.8	56
65	A targeting approach to the synthesis of membrane networks for gas separations. Journal of Membrane Science, 2002, 208, 193-202.	4.1	29
66	Regulatory control structure selection of linear systems. Computers and Chemical Engineering, 2002, 26, 875-887.	2.0	9
67	An algorithmic method for the selection of multivariable process control structures. Journal of Process Control, 2002, 12, 85-99.	1.7	47
68	An Algorithm for Simultaneous Process Design and Control. Industrial & Engineering Chemistry Research, 2001, 40, 4079-4088.	1.8	117
69	Heuristic-Based Mathematical Programming Framework for Control Structure Selection. Industrial & Engineering Chemistry Research, 2001, 40, 2079-2088.	1.8	27
70	An Algorithmic Method for Temperature Sensor Location Selection in Distillation Columns. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 527-532.	0.4	2
71	Process control structure selection based on economics. AICHE Journal, 2000, 46, 1998-2016.	1.8	65
72	A Systematic Method for Optimum Sensor Selection in Inferential Control Systems. Industrial & Engineering Chemistry Research, 1999, 38, 4299-4308.	1.8	21