Massimiliano Tattini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207787/publications.pdf

Version: 2024-02-01

101 papers

9,650 citations

50170 46 h-index 95 g-index

104 all docs

104 docs citations

104 times ranked 9736 citing authors

#	Article	IF	CITATIONS
1	Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 2012, 196, 67-76.	1.7	1,408
2	Multiple functional roles of flavonoids in photoprotection. New Phytologist, 2010, 186, 786-793.	3.5	656
3	Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 2015, 119, 4-17.	2.0	468
4	Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry, 2013, 72, 35-45.	2.8	452
5	Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 2004, 163, 547-561.	3.5	412
6	Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans. International Journal of Molecular Sciences, 2013, 14, 3540-3555.	1.8	363
7	Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling and Behavior, 2011, 6, 709-711.	1.2	351
8	Flavonols: old compounds for old roles. Annals of Botany, 2011, 108, 1225-1233.	1.4	311
9	The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology, 2011, 168, 204-212.	1.6	263
10	Chloroplast″ocated flavonoids can scavenge singlet oxygen. New Phytologist, 2007, 174, 77-89.	3. 5	232
11	Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytologist, 2000, 148, 69-77.	3.5	190
12	On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytologist, 2005, 167, 457-470.	3.5	153
13	Mesophyll distribution of â€~antioxidant' flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Annals of Botany, 2009, 104, 853-861.	1.4	153
14	Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiology, 1997, 17, 13-21.	1.4	144
15	Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiologia Plantarum, 1995, 95, 203-210.	2.6	139
16	Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant–Environment Interactions. Frontiers in Plant Science, 2018, 9, 1042.	1.7	134
17	Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants, 2020, 9, 1098.	2.2	133
18	Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environmental and Experimental Botany, 2011, 73, 3-9.	2.0	128

#	Article	IF	Citations
19	Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by droughtâ€stressed <i><scp>P</scp>latanusÂ</i> × <i>Âacerifolia</i> plants during Mediterranean summers. New Phytologist, 2015, 207, 613-626.	3.5	127
20	Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair?. Journal of Plant Physiology, 2012, 169, 929-939.	1.6	124
21	Antioxidant Activity of Galloyl Quinic Derivatives Isolated from P. lentiscus Leaves. Free Radical Research, 2003, 37, 405-412.	1.5	123
22	Photosynthetic limitations and volatile and nonâ€volatile isoprenoids in the poikilochlorophyllous resurrection plant <i>Xerophyta humilis</i> during dehydration and rehydration. Plant, Cell and Environment, 2012, 35, 2061-2074.	2.8	118
23	Flavonoids as Antioxidants in Plants Under Abiotic Stresses. , 2012, , 159-179.		110
24	Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L Phytochemical Analysis, 2002, 13, 79-86.	1.2	109
25	Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 2014, 103, 107-116.	2.0	109
26	Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 2015, 119, 54-62.	2.0	107
27	Morphoâ€anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytologist, 2006, 170, 779-794.	3.5	101
28	Metabolomics in plant environmental physiology. Journal of Experimental Botany, 2013, 64, 4011-4020.	2.4	96
29	Identification and quantitation of polyphenols in leaves of Myrtus communis L Chromatographia, 1999, 49, 17-20.	0.7	92
30	Changes in non-structural carbohydrates in olive (Olea europaea) leaves during root zone salinity stress. Physiologia Plantarum, 1996, 98, 117-124.	2.6	91
31	Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum) Tj ETQq $1\ 1\ 0$.	.784314 r	rgBT /Overlo <mark>ck</mark>
32	Genotipic responses of olive plants to sodium chloride. Journal of Plant Nutrition, 1992, 15, 1467-1485.	0.9	84
33	Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation. Physiologia Plantarum, 2014, 152, 585-598.	2.6	77
34	Flavonoid Distribution in Tissues of Phillyrea latifolia L. Leaves as Estimated by Microspectrofluorometry and Multispectral Fluorescence Microimaging¶. Photochemistry and Photobiology, 2002, 76, 350.	1.3	77
35	Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations. Tree Physiology, 2002, 22, 403-412.	1.4	67
36	Review: ABA, flavonols, and the evolvability of land plants. Plant Science, 2019, 280, 448-454.	1.7	67

#	Article	IF	CITATIONS
37	Isoprene production in transgenic tobacco alters isoprenoid, nonâ€structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. Plant, Cell and Environment, 2014, 37, 1950-1964.	2.8	63
38	Grape Ripening Is Regulated by Deficit Irrigation/Elevated Temperatures According to Cluster Position in the Canopy. Frontiers in Plant Science, 2016, 7, 1640.	1.7	57
39	Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiology, 2009, 29, 1187-1198.	1.4	55
40	Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. Journal of Arid Environments, 2013, 89, 21-29.	1.2	54
41	On the mechanism of salt tolerance in olive (Olea europaea L.) under low- or high-Ca2+ supply. Environmental and Experimental Botany, 2009, 65, 72-81.	2.0	52
42	BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch. Environmental Pollution, 2016, 213, 988-995.	3.7	52
43	Title is missing!. Plant and Soil, 1997, 197, 87-93.	1.8	50
44	Interactions of water stress and solar irradiance on the physiology and biochemistry of Ligustrum vulgare. Tree Physiology, 2008, 28, 873-883.	1.4	50
45	Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environmental and Experimental Botany, 2009, 65, 210-219.	2.0	50
46	UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection?. Environmental and Experimental Botany, 2016, 127, 14-25.	2.0	49
47	RNA-Seq Analysis of Quercus pubescens Leaves: De Novo Transcriptome Assembly, Annotation and Functional Markers Development. PLoS ONE, 2014, 9, e112487.	1.1	49
48	HPLC Analysis of Flavonoids and Secoiridoids in Leaves ofLigustrum vulgareL. (Oleaceae). Journal of Agricultural and Food Chemistry, 2000, 48, 4091-4096.	2.4	48
49	Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant and Soil, 2004, 259, 153-162.	1.8	48
50	Morphology and Biochemistry of Non-Glandular Trichomes in Cistus salvifolius L. Leaves Growing in Extreme Habitats of the Mediterranean Basin. Plant Biology, 2007, 9, 411-419.	1.8	47
51	An ecophysiological analysis of salinity tolerance in olive. Environmental and Experimental Botany, 2010, 68, 214-221.	2.0	46
52	Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. Journal of Experimental Botany, 2017, 68, 2425-2437.	2.4	42
53	Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change. Frontiers in Plant Science, 2017, 8, 1281.	1.7	42
54	Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiologia Plantarum, 2016, 157, 54-68.	2.6	40

#	Article	IF	Citations
55	The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance. Environmental and Experimental Botany, 2011, 70, 88-95.	2.0	39
56	Determination of flavonoids, flavonoid glycosides and biflavonoids inOlea europaea L. Leaves. Chromatographia, 1992, 33, 369-373.	0.7	37
57	Simultaneous LC-DAD and LC-MS Determination of Ellagitannins, Flavonoid Glycosides, and Acyl-Glycosyl Flavonoids in Cistus salvifolius L. Leaves. Chromatographia, 2005, 62, 245-249.	0.7	37
58	Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. Tree Physiology, 2017, 37, 1637-1647.	1.4	37
59	Characterisation and Antioxidant Activity of Crude Extract and Polyphenolic Rich Fractions from C. incanus Leaves. International Journal of Molecular Sciences, 2016, 17, 1344.	1.8	36
60	Anthocyanins in photoprotection: knowing theÂactors in play to solve thisÂcomplex ecophysiological issue. New Phytologist, 2021, 232, 2228-2235.	3.5	34
61	Extraction and identification procedures of polyphenolic compounds and carbohydrates in phillyrea (Phillyrea angustifolia L.) leaves. Chromatographia, 1996, 42, 571-577.	0.7	33
62	Salinity tolerance in Phillyrea species. New Phytologist, 1997, 135, 227-234.	3.5	33
63	PHENOLIC COMPOUNDS AND ANTIOXIDANT POWER IN MINIMALLY PROCESSED SALAD. Journal of Food Biochemistry, 2008, 32, 642-653.	1.2	32
64	Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. Plant, Cell and Environment, 2016, 39, 2185-2197.	2.8	32
65	Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side―of anthocyanins. Plant, Cell and Environment, 2021, 44, 1119-1129.	2.8	31
66	Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: A fluorescence microscopy analysis. Journal of Photochemistry and Photobiology B: Biology, 2014, 140, 28-35.	1.7	28
67	Editorial: Plants' Responses to Novel Environmental Pressures. Frontiers in Plant Science, 2017, 8, 2000.	1.7	28
68	Extraction, purification procedures and HPLC-RI analysis of carbohydrates in olive (Olea europaea L.) plants. Chromatographia, 1994, 39, 35-39.	0.7	27
69	De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight. PLoS ONE, 2016, 11, e0160370.	1.1	25
70	Responses to Changes in Ca2+ Supply in Two Mediterranean Evergreens, Phillyrea latifolia and Pistacia lentiscus, During Salinity Stress and Subsequent Relief. Annals of Botany, 2008, 102, 609-622.	1.4	24
71	Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism. Environmental Pollution, 2010, 158, 3164-3171.	3.7	23
72	Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. Journal of Experimental Botany, 2017, 68, 2439-2451.	2.4	23

#	Article	IF	Citations
73	Growth, ion accumulation, and lipid composition of two olive genotypes under salinity $<$ sup $>$ $1sup > 1< Journal of Plant Nutrition, 1995, 18, 1723-1734.$	0.9	22
74	Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress. Tree Physiology, 2018, 38, 1640-1654.	1.4	20
75	Functional and Structural Leaf Plasticity Determine Photosynthetic Performances during Drought Stress and Recovery in Two Platanus orientalis Populations from Contrasting Habitats. International Journal of Molecular Sciences, 2020, 21, 3912.	1.8	20
76	lonic relations of <i>Phillyrea latifolia</i> L. plants during NaCl stress and relief from stress. Canadian Journal of Botany, 1999, 77, 969-975.	1.2	20
77	Acclimation to partial shading or full sunlight determines the performance of container-grown Fraxinus ornus to subsequent drought stress. Urban Forestry and Urban Greening, 2014, 13, 63-70.	2.3	18
78	How Does Chloroplast Protect Chlorophyll Against Excessive Light?., 0, , .		17
79	Flavonoid Distribution in Tissues of Phillyrea latifolia L. Leaves as Estimated by Microspectrofluorometry and Multispectral Fluorescence Microimaging¶. Photochemistry and Photobiology, 2007, 76, 350-360.	1.3	16
80	Photosynthetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability. Functional Plant Biology, 2014, 41, 391.	1.1	16
81	Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiologia Plantarum, 1995, 95, 203-210.	2.6	16
82	Polyamine analysis in salt stressed plants of olive (<i>Olea europaea</i> L.). The Journal of Horticultural Science, 1993, 68, 613-617.	0.3	15
83	Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. International Journal of Molecular Sciences, 2022, 23, 5284.	1.8	15
84	Contrasting response mechanisms to root-zone salinity in three co-occurring Mediterranean woody evergreens: a physiological and biochemical study. Functional Plant Biology, 2009, 36, 551.	1.1	13
85	New evidence for the functional roles of secondary metabolites in plant–environment interactions. Environmental and Experimental Botany, 2015, 119, 1-3.	2.0	13
86	Seasonal and daily variations in primary and secondary metabolism of three maquis shrubs unveil different adaptive responses to Mediterranean climate., 2019, 7, coz070.		13
87	Physiological and structural adjustments of two ecotypes of <i>Platanus orientalis </i> L. from different habitats in response to drought and re-watering., 2018, 6, coy073.		11
88	Photoprotective Role of Photosynthetic and Non-Photosynthetic Pigments in Phillyrea latifolia: Is Their "Antioxidant―Function Prominent in Leaves Exposed to Severe Summer Drought?. International Journal of Molecular Sciences, 2021, 22, 8303.	1.8	11
89	Salinity stress constrains photosynthesis in Fraxinus ornus more when growing in partial shading than in full sunlight: consequences for the antioxidant defence system. Annals of Botany, 2014, 114, 525-538.	1.4	10
90	Phellem Cell-Wall Components Are Discriminants of Cork Quality in Quercus suber. Frontiers in Plant Science, 2019, 10, 944.	1.7	10

#	Article	IF	CITATIONS
91	Ionic relations of Phillyrea latifolia L. plants during NaCl stress and relief from stress. Canadian Journal of Botany, 1999, 77, 969-975.	1.2	9
92	Antioxidant Defenses in Plants: A Dated Topic of Current Interest. Antioxidants, 2021, 10, 855.	2.2	9
93	An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban Forestry and Urban Greening, 2019, 46, 126480.	2.3	8
94	CHANGES IN LEAF PHENOLIC COMPOUNDS IN TWO GRAPEVINE VARIETIES (VITIS VINIFERA L.) GROWN IN DIFFERENT WATER CONDITIONS. Acta Horticulturae, 2007, , 295-300.	0.1	7
95	Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus. International Journal of Molecular Sciences, 2019, 20, 3599.	1.8	7
96	Changes in non-structural carbohydrates in olive (Olea europaea) leaves during root zone salinity stress. Physiologia Plantarum, 1996, 98, 117-124.	2.6	7
97	Coordination of Morpho-Physiological and Metabolic Traits of Cistus incanus L. to Overcome Heatwave-Associated Summer Drought: A Two-Year On-Site Field Study. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	6
98	Plant lipids and salt exclusion ability in Olea europaea L. and Phyllirea angustifolia L. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1108-1109.	0.0	1
99	Antioxidant capacity and cytotoxicity of different polyphenolic extracts of Pistacia lentiscus. Planta Medica, 2016, 81, S1-S381.	0.7	1
100	Trees in urban environment: responde mechanisms and benefits for the ecosystem should guide plant selection for future plantings. Journal of Agricultural Economics, 2015, , .	0.1	1
101	Coordination of morpho-physiological and metabolic traits of C. incanus to overcome heatwave-associated summer drought: a two-year on-site field study. , 0, , .		0