
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077716/publications.pdf Version: 2024-02-01

IAMES RADDO

#	Article	IF	CITATIONS
1	Synthesis and characterization of a binary noble metal nitride. Nature Materials, 2004, 3, 294-297.	13.3	500
2	Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity. Science, 2003, 300, 789-791.	6.0	483
3	Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle. Science, 2004, 305, 383-386.	6.0	354
4	A seismologically consistent compositional model of Earth's core. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7542-7545.	3.3	263
5	X-ray Imaging of Stress and Strain of Diamond, Iron, and Tungsten at Megabar Pressures. Science, 1997, 276, 1242-1245.	6.0	237
6	Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth's core. Earth and Planetary Science Letters, 2007, 254, 233-238.	1.8	222
7	Terrestrial Accretion Under Oxidizing Conditions. Science, 2013, 339, 1194-1197.	6.0	180
8	Pressure-Induced High-Spin to Low-Spin Transition in FeS Evidenced by X-Ray Emission Spectroscopy. Physical Review Letters, 1999, 82, 3284-3287.	2.9	178
9	Magnetism in FeO at Megabar Pressures from X-Ray Emission Spectroscopy. Physical Review Letters, 1999, 83, 4101-4104.	2.9	175
10	Sound Velocities in Iron to 110 Gigapascals. Science, 2001, 291, 468-471.	6.0	151
11	Core formation and core composition from coupled geochemical and geophysical constraints. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12310-12314.	3.3	138
12	Copper isotope evidence for large-scale sulphide fractionation during Earth's differentiation. Geochemical Perspectives Letters, 2015, , 53-64.	1.0	134
13	Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth and Planetary Science Letters, 2012, 321-322, 189-197.	1.8	130
14	Composition of the Earth's inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth and Planetary Science Letters, 2010, 295, 292-296.	1.8	128
15	An early geodynamo driven by exsolution of mantle components from Earth's core. Nature, 2016, 536, 326-328.	13.7	128
16	Elastic anisotropy in textured hcp-iron to 112 GPa from sound wave propagation measurements. Earth and Planetary Science Letters, 2004, 225, 243-251.	1.8	120
17	Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium. Physical Review Letters, 2004, 93, 095502.	2.9	119
18	Spin Crossover in Ferropericlase at High Pressure: A Seismologically Transparent Transition?. Science, 2011, 331, 64-67.	6.0	118

#	Article	IF	CITATIONS
19	Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry. Earth and Planetary Science Letters, 2008, 269, 164-174.	1.8	111
20	Nature of the High-Pressure Transition inFe2O3Hematite. Physical Review Letters, 2002, 89, 205504.	2.9	108
21	High-pressure behavior in α-AlPO4: Amorphization and the memory-glass effect. Physical Review B, 1995, 51, 11262-11269.	1.1	102
22	Oxygen and silicon contents of Earth's core from high pressure metal–silicate partitioning experiments. Earth and Planetary Science Letters, 2011, 310, 409-421.	1.8	91
23	Deformation of (Mg0.9,Fe0.1)SiO3 Perovskite aggregates up to 32 GPa. Earth and Planetary Science Letters, 2003, 209, 351-360.	1.8	88
24	Silicon isotopes in angrites and volatile loss in planetesimals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17029-17032.	3.3	86
25	Numerical Simulation ofα-Quartz under Nonhydrostatic Compression: Memory Glass and Five-Coordinated Crystalline Phases. Physical Review Letters, 1996, 76, 772-775.	2.9	74
26	Sound velocity in iron carbide (Fe3C) at high pressure: Implications for the carbon content of the Earth's inner core. Physics of the Earth and Planetary Interiors, 2009, 172, 125-129.	0.7	73
27	Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 180-substituted calcite. Geochimica Et Cosmochimica Acta, 1996, 60, 3471-3485.	1.6	71
28	Low argon solubility in silicate melts at high pressure. Nature, 1998, 393, 352-355.	13.7	69
29	Redox state of Earth's magma ocean and its Venus-like early atmosphere. Science Advances, 2020, 6, .	4.7	69
30	Theoretical study of a five-coordinated silica polymorph. Physical Review B, 1997, 56, 5797-5806.	1.1	68
31	Aggregate and single-crystalline elasticity of hcp cobalt at high pressure. Physical Review B, 2005, 72, .	1.1	59
32	Elasticity of Cobalt at High Pressure Studied by Inelastic X-Ray Scattering. Physical Review Letters, 2004, 93, 215505.	2.9	56
33	A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nature Communications, 2018, 9, 1327.	5.8	56
34	Spin Transitions in Mantle Minerals. Annual Review of Earth and Planetary Sciences, 2014, 42, 231-248.	4.6	54
35	Composition of the low seismic velocity <i>E</i> ′ layer at the top of Earth's core. Geophysical Research Letters, 2017, 44, 8303-8310.	1.5	53
36	Redox state during core formation on asteroid 4-Vesta. Earth and Planetary Science Letters, 2013, 373, 75-82.	1.8	50

#	Article	IF	CITATIONS
37	Carbonate stability in the reduced lower mantle. Earth and Planetary Science Letters, 2018, 489, 84-91.	1.8	50
38	Magnesium Partitioning Between Earth's Mantle and Core and its Potential to Drive an Early Exsolution Geodynamo. Geophysical Research Letters, 2018, 45, 13,240.	1.5	50
39	Oxygen as a light element: A solution to single-stage core formation. Earth and Planetary Science Letters, 2009, 288, 108-114.	1.8	48
40	Effect of composition, structure, and spin state on the thermal conductivity of the Earth's lower mantle. Physics of the Earth and Planetary Interiors, 2010, 180, 148-153.	0.7	48
41	A Strong to Fragile Transition in a Model of Liquid Silica. Molecular Simulation, 1997, 20, 17-25.	0.9	47
42	Electronic properties of transition-metal oxides under high pressure revealed by x-ray emission spectroscopy. Journal of Physics Condensed Matter, 2005, 17, S717-S726.	0.7	47
43	Metal-Ligand Interplay in Strongly Correlated Oxides: A Parametrized Phase Diagram for Pressure-Induced Spin Transitions. Physical Review Letters, 2007, 98, 196404.	2.9	47
44	Spin and valence dependence of iron partitioning in Earth's deep mantle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11127-11130.	3.3	45
45	Application of inelastic X-ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Physics of the Earth and Planetary Interiors, 2004, 143-144, 5-18.	0.7	43
46	The solubility of heat-producing elements in Earth's core. Geochemical Perspectives Letters, 0, , 1-5.	1.0	43
47	Charge transfer at very high pressure in NiO. Physical Review B, 2003, 67, .	1.1	40
48	Strength, anisotropy, and preferred orientation of solid argon at high pressures. Journal of Physics Condensed Matter, 2006, 18, S963-S968.	0.7	40
49	Lattice Dynamics of Molybdenum at High Pressure. Physical Review Letters, 2006, 96, 115502.	2.9	38
50	Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth. Earth and Planetary Science Letters, 2018, 485, 130-139.	1.8	36
51	Melting and pressure-induced amorphization of quartz. Europhysics Letters, 1998, 42, 643-648.	0.7	35
52	Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochimica Et Cosmochimica Acta, 2019, 259, 391-411.	1.6	34
53	Anomalous pressure evolution of the axial ratio câ^•a in hcp cobalt: Interplay between structure, magnetism, and lattice dynamics. Applied Physics Letters, 2008, 92, .	1.5	31
54	Composition of the core from gallium metal–silicate partitioning experiments. Earth and Planetary Science Letters, 2015, 427, 191-201.	1.8	28

#	Article	IF	CITATIONS
55	Ab Initio Molecular Dynamics Investigation of Molten Fe–Si–O in Earth's Core. Geophysical Research Letters, 2019, 46, 6397-6405.	1.5	27
56	Chemical imaging with NanoSIMS: A window into deep-Earth geochemistry. Earth and Planetary Science Letters, 2007, 262, 543-551.	1.8	26
57	On the high-pressure phase transition in. European Physical Journal B, 1998, 1, 265-268.	0.6	22
58	Constraining compositional proxies for Earth's accretion and core formation through high pressure and high temperature Zn and S metal-silicate partitioning. Geochimica Et Cosmochimica Acta, 2018, 235, 21-40.	1.6	22
59	Seconds after impact: Insights into the thermal history of impact ejecta from diffusion between lechatelierite and host glass in tektites and experiments. Geochimica Et Cosmochimica Acta, 2018, 241, 69-94.	1.6	20
60	A New Reference for the Thermal Equation of State of Iron. Minerals (Basel, Switzerland), 2020, 10, 100.	0.8	20
61	The Earth's Lower Mantle and Core. Elements, 2008, 4, 177-182.	0.5	19
62	Thermal conductivity near the bottom of the Earth's lower mantle: Measurements of pyrolite up to 120 GPa and 2500 K. Earth and Planetary Science Letters, 2020, 536, 116161.	1.8	18
63	A combined XAS and XRD study of the high-pressure behaviour of GaAsO 4 berlinite. Europhysics Letters, 1997, 40, 533-538.	0.7	17
64	Spin state transition and partitioning of iron: Effects on mantle dynamics. Earth and Planetary Science Letters, 2015, 417, 57-66.	1.8	16
65	Composition dependence of spin transition in (Mg,Fe)SiO ₃ bridgmanite. American Mineralogist, 2015, 100, 2246-2253.	0.9	16
66	Thermochemical state of the lower mantle: New insights from mineral physics. Geophysical Monograph Series, 2005, , 241-260.	0.1	15
67	Blocked radiative heat transport in the hot pyrolitic lower mantle. Earth and Planetary Science Letters, 2020, 537, 116176.	1.8	15
68	Investigating Earth's Formation History Through Copper and Sulfur Metalâ€Silicate Partitioning During Coreâ€Mantle Differentiation. Journal of Geophysical Research: Solid Earth, 2018, 123, 8349-8363.	1.4	14
69	High pressure partitioning behavior of Mo and W and late sulfur delivery during Earth's core formation. Geochimica Et Cosmochimica Acta, 2021, 310, 19-31.	1.6	14
70	Constraining the behavior of gallium isotopes during evaporation at extreme temperatures. Geochimica Et Cosmochimica Acta, 2020, 286, 54-71.	1.6	13
71	Reversal of carbonate-silicate cation exchange in cold slabs in Earth's lower mantle. Nature Communications, 2021, 12, 1712.	5.8	13
72	Partitioning of Si and platinum group elements between liquid and solid Fe–Si alloys. Geochimica Et Cosmochimica Acta, 2014, 132, 94-100.	1.6	12

#	Article	IF	CITATIONS
73	Investigating Magma Ocean Solidification on Earth Through Laserâ€Heated Diamond Anvil Cell Experiments. Geophysical Research Letters, 2021, 48, e2021GL092446.	1.5	12
74	Geochemical Constraints on the Size of the Moonâ€Forming Giant Impact. Geophysical Research Letters, 2017, 44, 11,770.	1.5	10
75	Fe-Ni ideality during core formation on Earth. American Mineralogist, 2018, 103, 1707-1710.	0.9	9
76	The niobium and tantalum concentration in the mantle constrains the composition of Earth's primordial magma ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27893-27898.	3.3	8
77	Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals. Earth and Planetary Science Letters, 2021, 554, 116685.	1.8	7
78	Contrasting opacity of bridgmanite and ferropericlase in the lowermost mantle: Implications to radiative and electrical conductivity. Earth and Planetary Science Letters, 2021, 562, 116871.	1.8	7
79	Publisher's Note: Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium [Phys. Rev. Lett.93, 095502 (2004)]. Physical Review Letters, 2004, 93, .	2.9	6
80	Determination of Phonon Dispersion Curves at Gigapascal Pressures by Inelastic X-ray Scattering. High Pressure Research, 2002, 22, 73-77.	0.4	5
81	Low Velocity Zones in the Martian Upper Mantle Highlighted by Sound Velocity Measurements. Geophysical Research Letters, 2021, 48, e2021GL093977.	1.5	4
82	Composition and Pressure Effects on Partitioning of Ferrous Iron in Iron-Rich Lower Mantle Heterogeneities. Minerals (Basel, Switzerland), 2021, 11, 512.	0.8	3
83	XAS Study of the High Pressure Behaviour of Quartz-Like Compounds. European Physical Journal Special Topics, 1997, 7, C2-987-C2-989.	0.2	3
84	Electron Energy Loss Near Edge Structures as a Tool to Elucidate Natural and Artificial Minerals Structures. Microscopy and Microanalysis, 2017, 23, 2154-2155.	0.2	1
85	Acceptance of the 2006 Houtermans award. Geochimica Et Cosmochimica Acta, 2007, 71, S28-S29.	1.6	0
86	Acceptance of the Mineralogical Society of America Award for 2008. American Mineralogist, 2009, 94, 643-643.	0.9	0
87	STEM EDS/EELS for Phase Analysis of Deep-Mantle Rock Assemblages Supported by Machine Learning. Microscopy and Microanalysis, 2019, 25, 2474-2475.	0.2	0
88	Reply to Comment by Jennings et al. on "Investigating Earth's Formation History Through Copper and Sulfur Metalâ€Silicate Partitioning During Coreâ€Mantle Differentiation― Journal of Geophysical Research: Solid Earth, 2019, 124, 12845-12853.	1.4	0
89	Experimental investigation of elemental and isotopic evaporation processes by laser heating in an aerodynamic levitation furnace. Comptes Rendus - Geoscience, 2021, 353, 101-114.	0.4	0