Chuluo Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2077642/chuluo-yang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

382	17,661	72	117
papers	citations	h-index	g-index
403	20,868 ext. citations	10.6	7.2 8
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
382	Orange, red, and near-infrared thermally activated delayed fluorescent emitters 2022 , 193-234		
381	Rigid Bridge-Confined Double-Decker Platinum(II) Complexes Towards High-Performance Red and Near-Infrared Electroluminescence. <i>Angewandte Chemie</i> , 2022 , 134, e202113718	3.6	
380	Long excited state lifetime of thermally activated delayed fluorescent photosensitizer integrated into Metal-organic framework enables efficient CO2 photoreduction. <i>Chemical Engineering Journal</i> , 2022 , 431, 133897	14.7	2
379	Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs. <i>Dyes and Pigments</i> , 2022 , 197, 109860	4.6	4
378	Molecular engineering by Elinkers enables delayed fluorescence emitters for high-efficiency sky-blue solution-processed OLEDs. <i>Chemical Engineering Journal</i> , 2022 , 430, 133078	14.7	2
377	Nematic liquid crystals induce and amplify the circularly polarized luminescence of chiral TADF emitters. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5065-5069	7.1	2
376	Narrowband blue emission with insensitivity to the doping concentration from an oxygen-bridged triarylboron-based TADF emitter: nondoped OLEDs with a high external quantum efficiency up to 21.4 Chemical Science, 2022, 13, 3402-3408	9.4	4
375	Non-fullerene Small-Molecule Acceptors for Organic Solar Cells 2022 , 145-214		0
374	High Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency and Large Dissymmetry Factor <i>Advanced Materials</i> , 2022 , e2109147	24	2
373	Modulating LUMO extension of Spiro-junction TADF emitters for efficient OLEDs with relieved efficiency Roll-Off. <i>Chemical Engineering Journal</i> , 2022 , 437, 135222	14.7	3
372	Aggregation-induced delayed fluorescence for time-resolved luminescence sensing of carboxylesterase in living cells. <i>Chemical Engineering Journal</i> , 2022 , 437, 135396	14.7	2
371	Polycyclic phenazine-derived rigid donors construct thermally activated delayed fluorescence emitters for highly efficient orange OLEDs with extremely low roll-off. <i>Chemical Engineering Journal</i> , 2022 , 438, 135571	14.7	3
370	Simple Molecular Design Strategy for Multiresonance Induced TADF Emitter: Highly Efficient Deep Blue to Blue Electroluminescence with High Color Purity. <i>Advanced Optical Materials</i> , 2022 , 10, 210209.	2 ^{8.1}	7
369	Fine-Tuning Batch Factors of Polymer Acceptors Enables a Binary All-Polymer Solar Cell with High Efficiency of 16.11%. <i>Advanced Energy Materials</i> , 2022 , 12, 2103193	21.8	8
368	Aggregation-induced emission luminogens for organic light-emitting diodes 2022 , 315-372		
367	Red and near-infrared emissive palladium(II) complexes with tetradentate coordination framework and their application in OLEDs. <i>Chemical Engineering Journal</i> , 2022 , 446, 136834	14.7	1
366	High Performance Narrowband Pure-red OLEDs with External Quantum Efficiencies up to 36.1% and Ultra-low Efficiency Roll-off <i>Advanced Materials</i> , 2022 , e2201442	24	10

(2021-2022)

365	High-Performance Non-fullerene Organic Solar Cells Enabled by Noncovalent Conformational Locks and Side-Chain Engineering. <i>Chemical Engineering Journal</i> , 2022 , 137206	14.7	2
364	Exciton Management of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Devices 2022 , 79-142		
363	Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 17265-17286	7.1	4
362	Rigid Bridge-Confined Double-Decker Platinum(II) Complexes Towards High-Performance Red and Near-Infrared Electroluminescence. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	3
361	Three Types of Charged Ligands Based Carboxyl-Containing Iridium(III) Complexes: Structures, Photophysics, and Solution Processed OLED Application. <i>Inorganic Chemistry</i> , 2021 , 60, 17699-17704	5.1	2
360	Quenching-Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level. <i>Advanced Materials</i> , 2021 , e2106954	24	36
359	High-efficiency and low roll-off deep-blue OLEDs enabled by thermally activated delayed fluorescence emitter with preferred horizontal dipole orientation. <i>Chemical Engineering Journal</i> , 2021 , 433, 133598	14.7	3
358	Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. <i>ACS Applied Materials & Decoration Strategy</i> . <i>ACS Applied Materials & Decoration Strategy</i> .	9.5	9
357	Efficient blue thermally activated delayed fluorescent emitters based on a boranaphtho[3,2,1-de]anthracene acceptor. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 17136-17142	7.1	3
356	Three types of charged ligand-based neutral phosphorescent iridium(III) complexes featuring -carborane: synthesis, structures, and solution processed organic light-emitting diode applications. <i>Dalton Transactions</i> , 2021 , 50, 16304-16310	4.3	3
355	Side by Side Alignment of Donors Enabling High-Efficiency TADF OLEDs with Insensitivity to Doping Concentration. <i>Advanced Optical Materials</i> , 2021 , 9, 2101410	8.1	4
354	Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazine-Fused Carbene Au(I) Emitters. <i>Chemistry - A European Journal</i> , 2021 ,	4.8	4
353	Confining electron donor and acceptor in space to realize high efficiency charge-transfer luminescence. <i>Science China Chemistry</i> , 2021 , 64, 165-166	7.9	2
352	High-Efficiency Red Electroluminescence Based on a Carbene-Cu(I)-Acridine Complex. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	15
351	Ternary organic solar cells with PCEs of up to 16.6% by two complementary acceptors working in alloy-like model. <i>Organic Electronics</i> , 2021 , 91, 106085	3.5	6
350	Versatile Direct Cyclization Constructs Spiro-acridan Derivatives for Highly Efficient TADF emitters. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12376-12380	16.4	20
349	Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. <i>Coordination Chemistry Reviews</i> , 2021 , 433, 213755	23.2	21
348	Highly efficient blue TADF emitters incorporating bulky acridine moieties and their application in solution-processed OLEDs. <i>Dyes and Pigments</i> , 2021 , 188, 109157	4.6	5

347	Versatile Direct Cyclization Constructs Spiro-acridan Derivatives for Highly Efficient TADF emitters. <i>Angewandte Chemie</i> , 2021 , 133, 12484-12488	3.6	4
346	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. <i>Dyes and Pigments</i> , 2021 , 188, 109192	4.6	1
345	Peripheral Decoration of Multi-Resonance Molecules as a Versatile Approach for Simultaneous Long-Wavelength and Narrowband Emission. <i>Advanced Functional Materials</i> , 2021 , 31, 2102017	15.6	43
344	28-1: Invited Paper: Efficient Thermally Activated Delayed Fluorescence Emitters with Preferentially Horizontal Dipole Orientations. <i>Digest of Technical Papers SID International Symposium</i> , 2021 , 52, 349-350	0.5	
343	3D Triptycene-Fused Acridine Electron Donor Enables High-Efficiency Nondoped Thermally Activated Delayed Fluorescent OLEDs. <i>Advanced Optical Materials</i> , 2021 , 9, 2100273	8.1	6
342	Over 16% Efficiency of Thick-Film Organic Photovoltaics with Symmetric and Asymmetric Non-Fullerene Materials as Alloyed Acceptor. <i>Solar Rrl</i> , 2021 , 5, 2100365	7.1	6
341	Semitransparent Circularly Polarized Phosphorescent Organic Light-Emitting Diodes with External Quantum Efficiency over 30% and Dissymmetry Factor Close to 10\(\mathbb{Z}\). Advanced Functional Materials, 2021, 31, 2102898	15.6	13
340	Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. <i>Materials Horizons</i> , 2021 , 8, 547-555	14.4	34
339	Face-to-Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3994-3998	16.4	46
338	A Pyrrole-Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. <i>Small Structures</i> , 2021 , 2, 2000052	8.7	8
337	High-efficiency red thermally activated delayed fluorescence emitters based on benzothiophene-fused spiro-acridine donor. <i>Chemical Engineering Journal</i> , 2021 , 405, 126663	14.7	22
336	De novo design of polymers embedded with platinum acetylides towards n-type organic thermoelectrics. <i>Chemical Engineering Journal</i> , 2021 , 405, 126692	14.7	8
335	Multicolor ultralong room-temperature phosphorescence from pure organic emitters by structural isomerism. <i>Chemical Engineering Journal</i> , 2021 , 408, 127309	14.7	9
334	Face-to-Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. <i>Angewandte Chemie</i> , 2021 , 133, 4040-4044	3.6	12
333	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. <i>Science China Materials</i> , 2021 , 64, 920-930	7.1	17
332	Triplet-triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. <i>Materials Horizons</i> , 2021 , 8, 606-6	5 1 4·4	1
331	Modulating the Electron-Donating Ability of Acridine Donor Units for Orange-Red Thermally Activated Delayed Fluorescence Emitters. <i>Chemistry - A European Journal</i> , 2021 , 27, 3151-3158	4.8	7
330	Highly efficient thermally activated delayed fluorescence emitters enabled by double charge transfer pathways via ortho-linked triarylboron/carbazole hybrids. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1678-1684	7.1	6

(2021-2021)

329	Benzo[c][1,2,5]thiadiazole-fused pentacyclic small molecule acceptors for organic solar cells. <i>Dyes and Pigments</i> , 2021 , 185, 108970	4.6	1
328	A Plastic Scintillator Based on an Efficient Thermally Activated Delayed Fluorescence Emitter 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-3,6-dioctyl-9H-carbazole for Pulse Shape Discrimination Measurement. <i>Advanced Optical Materials</i> , 2021 , 9, 2001975	8.1	5
327	Multi-resonance organoboron-based fluorescent probe for ultra-sensitive, selective and reversible detection of fluoride ions. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1567-1571	7.1	9
326	Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12633-12641	7.1	O
325	An unsymmetrical thermally activated delayed fluorescence emitter enables orange-red electroluminescence with 31.7% external quantum efficiency. <i>Materials Horizons</i> , 2021 , 8, 2286-2292	14.4	15
324	Color-tunable tetracoordinated organoboron complexes exhibiting aggregation-induced emission for the efficient turn-on detection of fluoride ions. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2353-2360	7.8	5
323	A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3192-3200	7.8	11
322	Three Types of Charged-Ligand-Based Blue G reen to Near-Infrared Emitting Iridium Complexes: Synthesis, Structures, and Organic Light-Emitting Diode Application. <i>Advanced Optical Materials</i> , 2021 , 9, 2002060	8.1	9
321	Photooxidation Analysis of Two Isomeric Nonfullerene Acceptors: A Systematic Study of Conformational, Morphological, and Environmental Factors. <i>Solar Rrl</i> , 2021 , 5, 2000704	7.1	2
320	On-off switchable thermally activated delayed fluorescence controlled by multiple channels: Understanding the mechanism behind distinctive polymorph-dependent optical properties. <i>Chemical Engineering Journal</i> , 2021 , 415, 128909	14.7	4
319	Unfused Electronic Acceptor-Based Polymers as Interfacial Materials for Efficient Inverted Perovskite Solar Cells. <i>ACS Applied Materials & Empty Interfaces</i> , 2021 , 13, 33328-33334	9.5	2
318	Difluoroboron locking tactic enhances photo- and electroluminescence of TADF emitter. <i>Dyes and Pigments</i> , 2021 , 192, 109392	4.6	3
317	Deep-red thermally activated delayed fluorescence emitters based on a phenanthroline-containing planar acceptor. <i>Dyes and Pigments</i> , 2021 , 192, 109474	4.6	2
316	Tuning of Ffster Resonance Energy Transfer in Metal Drganic Frameworks: Toward Amplified Fluorescence Sensing. <i>CCS Chemistry</i> , 2021 , 3, 2054-2062	7.2	10
315	Solution-processed multiple exciplexes via spirofluorene and S-triazine moieties for red thermally activated delayed fluorescence emissive layer OLEDs. <i>Organic Electronics</i> , 2021 , 96, 106184	3.5	5
314	Realize efficient organic afterglow from simple halogenated acridan derivatives. <i>Chemical Engineering Journal</i> , 2021 , 419, 129598	14.7	5
313	Saccharin-derived multifunctional emitters featuring concurrently room temperature phosphorescence, thermally activated delayed fluorescence and aggregation-induced enhanced emission. <i>Chemical Engineering Journal</i> , 2021 , 419, 129628	14.7	4
312	Naphthalene-fused octacyclic electron-donating central core constructs non-fullerene acceptors for organic solar cells. <i>Chemical Engineering Journal</i> , 2021 , 425, 130618	14.7	1

311	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. <i>Chemical Engineering Journal</i> , 2021 , 426, 131169	14.7	33
310	The cis- and trans-orientation of benzo[1,2-b:4,5-b?]dithiophene-based isomers in organic solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1486-1494	7.8	2
309	Highly efficient red thermally activated delayed fluorescence emitters by manipulating the molecular horizontal orientation. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3209-3215	7.8	11
308	Sky-blue thermally activated delayed fluorescence polymers by using a conjugation-confined poly(aryl ether) main chain. <i>Polymer Chemistry</i> , 2021 , 12, 2490-2497	4.9	2
307	Triazatruxene based star-shaped thermally activated delayed fluorescence emitters: modulating the performance of solution-processed non-doped OLEDs via side-group engineering. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 7363-7373	7.1	4
306	Highly emissive phosphorescence nanoparticles sensitized by a TADF polymer for time-resolved luminescence imaging. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2389-2397	7.8	4
305	A simple strategy to achieve efficient thermally activated delayed fluorescent emitters via enhancing electron donating ability of donors. <i>Dyes and Pigments</i> , 2020 , 180, 108521	4.6	2
304	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. <i>Joule</i> , 2020 , 4, 1236-1247	27.8	237
303	Superacid-catalyzed Friedel@rafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. <i>Polymer Chemistry</i> , 2020 , 11, 3481-3487	4.9	4
302	Designing versatile sulfoximine as accepting unit to regulate the photophysical properties of TADF emitters towards high-performance OLEDs. <i>Chemical Engineering Journal</i> , 2020 , 399, 125648	14.7	10
301	Unravelling Electroplex Emission from Long-Range Charge Transfer Based on a Phosphorescent Dendrimer as the Electron Donor. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5255-5262	6.4	9
300	Sky-blue thermally activated delayed fluorescence polymers with Enterrupted polymer mainchain via Friedel-Crafts polycondensation. <i>Polymer</i> , 2020 , 204, 122722	3.9	3
299	Isomerization enhanced quantum yield of dibenzo[a,c]phenazine-based thermally activated delayed fluorescence emitters for highly efficient orange OLEDs. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9639-9645	7.1	14
298	Dinuclear Zn Complexes Exhibiting Thermally Activated Delayed Fluorescence and Luminescence Polymorphism. <i>Chemistry - A European Journal</i> , 2020 , 26, 6887-6893	4.8	11
297	Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels. <i>Small</i> , 2020 , 16, e2000441	11	45
296	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. <i>Nature Communications</i> , 2020 , 11, 1218	17.4	111
295	Conformation-Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. <i>Small</i> , 2020 , 16, e2001942	11	30
294	An asymmetrical fused-ring electron acceptor designed by a cross-conceptual strategy achieving 15.6% efficiency. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14583-14591	13	19

(2020-2020)

293	Modulating the acceptor structure of dicyanopyridine based TADF emitters: Nearly 30% external quantum efficiency and suppression on efficiency roll-off in OLED. <i>Chemical Engineering Journal</i> , 2020 , 401, 126107	14.7	17
292	Regulating the photophysical properties of highly twisted TADF emitters by concurrent through-space/-bond charge transfer. <i>Chemical Engineering Journal</i> , 2020 , 402, 126173	14.7	26
291	Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells. <i>Organic Electronics</i> , 2020 , 85, 105880	3.5	6
290	Achieving 21% External Quantum Efficiency for Nondoped Solution-Processed Sky-Blue Thermally Activated Delayed Fluorescence OLEDs by Means of Multi-(Donor/Acceptor) Emitter with Through-Space/-Bond Charge Transfer. <i>Advanced Science</i> , 2020 , 7, 1902087	13.6	74
289	A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation. <i>Advanced Functional Materials</i> , 2020 , 30, 1908839	15.6	73
288	Organic Thermally Activated Delayed Fluorescence Materials for Time-Resolved Luminescence Imaging and Sensing. <i>Advanced Optical Materials</i> , 2020 , 8, 1902187	8.1	49
287	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. <i>ACS Applied Materials & Differences</i> , 2020, 12, 13068-13076	9.5	15
286	Star-shaped thermally activated delayed fluorescence emitters with a tri-armed arylsulfonic acceptor for efficient solution processed organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5580-5586	7.1	8
285	Simultaneously High Upconversion Efficiency and Large Anti-Stokes Shift by Using Os(II) Complex Dyad as Triplet Photosensitizer. <i>Advanced Optical Materials</i> , 2020 , 8, 1902157	8.1	18
284	Polymorphism-dependent thermally activated delayed fluorescence materials with diverse three dimensional supramolecular frameworks. <i>Chemical Engineering Journal</i> , 2020 , 390, 124626	14.7	17
283	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. <i>Science China Chemistry</i> , 2020 , 63, 361-369	7.9	99
282	Extending Photoresponse to the Near-Infrared Region for Inverted Perovskite Solar Cells by Using a Low-Bandgap Electron Transporting Material. <i>Solar Rrl</i> , 2020 , 4, 1900565	7.1	5
281	Alloy-like ternary polymer solar cells with over 17.2% efficiency. <i>Science Bulletin</i> , 2020 , 65, 538-545	10.6	180
2 80	Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. <i>Energy and Environmental Science</i> , 2020 , 13, 958-967	35.4	148
279	Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. <i>Nanoscale</i> , 2020 , 12, 4945-4952	7.7	12
278	Thick-Film Organic Solar Cells Achieving over 11% Efficiency and Nearly 70% Fill Factor at Thickness over 400 nm. <i>Advanced Functional Materials</i> , 2020 , 30, 1908336	15.6	70
277	Dithieno[3,2-:2',3'-]pyrrol-Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogen-Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. <i>Advanced Science</i> , 2020 , 7, 1902657	13.6	37
276	Molecular engineering by EBond spacer enables solution-processable host materials for TADF emitter towards high-performance OLEDs. <i>Chemical Engineering Journal</i> , 2020 , 396, 125276	14.7	9

275	Purine-based thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes. <i>Dyes and Pigments</i> , 2020 , 180, 108437	4.6	8
274	Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10831-10836	7.1	4
273	Achieving Eco-Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complex-Incorporated Polymer Donor. <i>Solar Rrl</i> , 2020 , 4, 2000156	7.1	29
272	High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. <i>Science China Chemistry</i> , 2020 , 63, 1246-1255	7.9	40
271	AIE-active multicolor tunable luminogens: simultaneous mechanochromism and acidochromism with high contrast beyond 100 nm. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2047-2053	7.8	25
270	Polymorph-Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9972-997	76 ^{6.4}	42
269	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H-H repulsion for highly efficient thermally activated delayed fluorescence emitters. <i>Chemical Communications</i> , 2020 , 56, 2308-2311	5.8	8
268	Saturated red iridium(III) complexes containing a unique four-membered IrBITN backbone: mild synthesis and application in OLEDs. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1391-1397	7.1	5
267	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. <i>Joule</i> , 2020 , 4, 407-419	27.8	159
266	Double-twist pyridinedarbonitrile derivatives yielding excellent thermally activated delayed fluorescence emitters for high-performance OLEDs. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 602-606	7.1	12
265	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. <i>Dyes and Pigments</i> , 2020 , 176, 108179	4.6	15
264	Polymorph-Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. <i>Angewandte Chemie</i> , 2020 , 132, 10058-10062	3.6	5
263	High-Efficiency White Organic Light-Emitting Diodes Based on All Nondoped Thermally Activated Delayed Fluorescence Emitters. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901758	4.6	9
262	Emerging circularly polarized thermally activated delayed fluorescence materials and devices. <i>Applied Physics Letters</i> , 2020 , 117, 130502	3.4	20
261	Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. <i>Science Advances</i> , 2020 , 6,	14.3	47
260	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables High-Performance Acceptor and Efficient Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2007	2649 ⁸	59
259	Efficient Yellow Thermally Activated Delayed Fluorescent Emitters Based on 3,5-Dicyanopyridine Acceptors. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 25489-25498	3.8	3
258	Thermally activated delayed fluorescent polymer- assisted morphological control on perfluorinated ionomer enriched surface and exciton harvesting for phosphorescent organic light-emitting devices. <i>Dyes and Pigments</i> , 2020 , 183, 108718	4.6	3

257	Monoradically luminescent polymers by a super acid-catalyzed polymerization and deep-red electroluminescence. <i>Science China Chemistry</i> , 2020 , 63, 1214-1220	7.9	5
256	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 2711-2720	20.1	137
255	Pyrido[2,3-b]pyrazine-based full-color fluoresent materials for high-performance OLEDs. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12445-12449	7.1	7
254	The regioisomeric bromination effects of fused-ring electron acceptors: modulation of the optoelectronic property and miscibility endowing the polymer solar cells with 15% efficiency. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25101-25108	13	10
253	Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15. <i>Advanced Materials</i> , 2020 , 32, e2005942	24	144
252	High-efficiency organic light emitting diodes using high-index transparent electrode. <i>Organic Electronics</i> , 2020 , 87, 105984	3.5	1
251	Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. <i>Inorganic Chemistry</i> , 2020 , 59, 12122-12131	5.1	13
250	Isomerization Strategy of Nonfullerene Small-Molecule Acceptors for Organic Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2004477	15.6	31
249	Manipulating the doping level via host-dopant synergism towards high performance n-type thermoelectric composites. <i>Chemical Engineering Journal</i> , 2020 , 382, 122817	14.7	15
248	Transfer printing of polymer light-emitting devices with a small molecular seeding layer featuring thermally activated delayed fluorescence for triplet harvesting. <i>Nanoscale Horizons</i> , 2020 , 5, 144-149	10.8	8
247	Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene Bridge. <i>Macromolecules</i> , 2020 , 53, 2893-2901	5.5	15
246	Fused tetracyclic tris[1,2,4]triazolo[1,3,5]triazine as a novel rigid electron acceptor for efficient thermally activated delayed fluorescence emitters <i>RSC Advances</i> , 2020 , 10, 15523-15529	3.7	10
245	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. <i>Nano Energy</i> , 2019 , 66, 104146	17.1	36
244	Energy level-modulated non-fullerene small molecule acceptors for improved VOC and efficiency of inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3336-3343	13	21
243	Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. <i>Chemical Science</i> , 2019 , 10, 2342-2348	9.4	74
242	Isomerization of Perylene Diimide Based Acceptors Enabling High-Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. <i>Advanced Science</i> , 2019 , 6, 1802065	13.6	56
241	Green and yellow pyridazine-based phosphorescent Iridium(III) complexes for high-efficiency and low-cost organic light-emitting diodes. <i>Dyes and Pigments</i> , 2019 , 164, 206-212	4.6	11
240	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. <i>Chemistry of Materials</i> , 2019 , 31, 1752-1760	9.6	36

239	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. <i>Energy and Environmental Science</i> , 2019 , 12, 384-395	35.4	143
238	B- and N-embedded color-tunable phosphorescent iridium complexes and B-N Lewis adducts with intriguing structural and optical changes. <i>Chemical Science</i> , 2019 , 10, 3257-3263	9.4	35
237	Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. Journal of Materials Chemistry A, 2019 , 7, 2412-2420	13	11
236	Realizing 22.5% External Quantum Efficiency for Solution-Processed Thermally Activated Delayed-Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. <i>Advanced Materials</i> , 2019 , 31, e1901404	24	122
235	Combining the qualities of carbazole and tetraphenyl silane in a desirable main chain for thermally activated delayed fluorescence polymers. <i>Polymer Chemistry</i> , 2019 , 10, 4201-4208	4.9	11
234	Tuning the emissive characteristics of TADF emitters by fusing heterocycles with acridine as donors: highly efficient orange to red organic light-emitting diodes with EQE over 20%. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9087-9094	7.1	16
233	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. <i>Nature Communications</i> , 2019 , 10, 2380	17.4	60
232	Fused-Ring Core Engineering for Small Molecule Acceptors Enable High-Performance Nonfullerene Polymer Solar Cells. <i>Small Methods</i> , 2019 , 3, 1900280	12.8	12
231	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. <i>Energy and Environmental Science</i> , 2019 , 12, 2529-2536	35.4	188
230	Overcoming the energy loss in asymmetrical non-fullerene acceptor-based polymer solar cells by halogenation of polymer donors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15404-15410	13	32
229	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. <i>Angewandte Chemie</i> , 2019 , 131, 8608	3.6	4
228	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8520-8525	16.4	55
227	Unconjugated Side-Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Non-Fullerene Organic Solar Cells: Insights into the Fine-Tuning of Acceptor Properties and Micromorphology. <i>Advanced Functional Materials</i> , 2019 , 29, 1902155	15.6	86
226	Enhancing Spin-Orbit Coupling by Introducing a Lone Pair Electron with p Orbital Character in a Thermally Activated Delayed Fluorescence Emitter: Photophysics and Devices. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2669-2675	6.4	22
225	Boosting photoluminescence quantum yields of triarylboron/phenoxazine hybrids via incorporation of cyano groups and their applications as TADF emitters for high-performance solution-processed OLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4778-4783	7.1	16
224	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6607-6615	7.1	22
223	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10081-10086	3.8	34
222	A High-Performance Non-Fullerene Acceptor Compatible with Polymers with Different Bandgaps for Efficient Organic Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1800376	7.1	34

221	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 709-715	7.8	8
220	Reduced Energy Loss Enabled by a Chlorinated Thiophene-Fused Ending-Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. <i>Advanced Energy Materials</i> , 2019 , 9, 1900041	21.8	117
219	Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells via designing asymmetrical non-fullerene acceptor. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11053-11061	13	25
218	Thermoelectrics of two-dimensional conjugated benzodithiophene-based polymers: density-of-states enhancement and semi-metallic behavior. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10422-10430	13	21
217	Multifunctional Thermally Activated Delayed Fluorescence Emitters and Insight into Multicolor-Mechanochromism Promoted by Weak Intra- and Intermolecular Interactions. <i>Advanced Optical Materials</i> , 2019 , 7, 1900727	8.1	42
216	A small-molecule organic cathode with fast chargedischarge capability for K-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20127-20131	13	30
215	Poly(N-vinylcarbazole) (PVK) as a high-potential organic polymer cathode for dual-intercalation Na-ion batteries. <i>Organic Electronics</i> , 2019 , 75, 105386	3.5	17
214	High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation via a spiro-linked double DA molecular architecture. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10851-10859	7.1	33
213	Two Well-Compatible Acceptors with Efficient Energy Transfer Enable Ternary Organic Photovoltaics Exhibiting a 13.36% Efficiency. <i>Small</i> , 2019 , 15, e1902602	11	11
212	In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries. <i>ACS Applied Materials & District Materials</i> (2019), 11, 32987-32993	9.5	9
211	Sulfur-annulated perylenediimide as an interfacial material enabling inverted perovskite solar cells with over 20% efficiency and high fill factors exceeding 83%. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21176-21181	13	8
210	Feasible Modification of PEDOT:PSS by Poly(4-styrenesulfonic acid): A Universal Method to Double the Efficiencies for Solution-Processed Organic Light-Emitting Devices. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 29105-29112	9.5	21
209	Ternary organic solar cells with J71 as donor and alloyed acceptors exhibiting 13.16% efficiency. <i>Nano Energy</i> , 2019 , 63, 103888	17.1	23
208	A novel 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile end group for an efficient non-fullerene small molecule acceptor. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10111-10118	7.1	5
207	Chlorination Strategy-Induced Abnormal Nanomorphology Tuning in High-Efficiency Organic Solar Cells: A Study of Phenyl-Substituted Benzodithiophene-Based Nonfullerene Acceptors. <i>Solar Rrl</i> , 2019 , 3, 1900262	7.1	15
206	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. <i>Angewandte Chemie</i> , 2019 , 131, 17	81 ³ 5-17	81 9
205	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17651-17655	16.4	75
204	Insight into the Efficiency and Stability of All-Polymer Solar Cells Based on Two 2D-Conjugated Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer	13 3 -434	40 ⁶

203	High-Efficiency Solution-Processed Organic Light-Emitting Diodes with Tetradentate Platinum(II) Emitters. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	15
202	Self-Assembly of a Highly Emissive Pure Organic Imine-Based Stack for Electroluminescence and Cell Imaging. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4704-4710	16.4	61
201	Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7843-7851	13	110
200	Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells via methyl-functionalized non-fullerene acceptors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6809-6817	13	18
199	Ternary polymer solar cells with alloyed non-fullerene acceptor exhibiting 12.99% efficiency and 76.03% fill factor. <i>Nano Energy</i> , 2019 , 59, 58-65	17.1	50
198	Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13218-13223	7.1	4
197	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. <i>Chemical Communications</i> , 2019 , 55, 1512	25 ⁵ 1512	28 ¹¹
196	Fine-tuning the photophysical properties of thermally activated delayed fluorescent emitters using torsion angles: high performance sky-blue OLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13953-139	59 ^{7.1}	10
195	Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. <i>Chemical Communications</i> , 2019 , 55, 14190-14193	5.8	18
194	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25088-25101	13	61
193	New-structure perylene diimide oligomers by the linkage of the bay- and imide-position for nonfullerene solar cells. <i>Dyes and Pigments</i> , 2019 , 163, 356-362	4.6	7
192	Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. <i>Nano Energy</i> , 2019 , 55, 424-432	17.1	134
191	Hydrophilic, Red-Emitting, and Thermally Activated Delayed Fluorescence Emitter for Time-Resolved Luminescence Imaging by Mitochondrion-Induced Aggregation in Living Cells. <i>Advanced Science</i> , 2019 , 6, 1801729	13.6	56
190	Systematic investigation of methyl substitution effect on physicochemical properties and photovoltaic performance in nonfullerene small-molecule electron acceptors. <i>Dyes and Pigments</i> , 2019 , 164, 126-132	4.6	3
189	Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Self-Doped Cathode Interfacial Layers for Organic Photovoltaics. <i>Advanced Functional Materials</i> , 2019 , 29, 1806125	15.6	15
188	Boosting the Efficiency of Near-Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizer-Based Cascade Energy Transfer. <i>Advanced Functional Materials</i> , 2018 , 28, 1706088	15.6	4 0
187	Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1547-1553	6.4	83
186	Temperature-dependent self-assembly of a purely organic cage in water. <i>Chemical Communications</i> , 2018 , 54, 3138-3141	5.8	22

185	Tailoring the framework of organic small molecule semiconductors towards high-performance thermoelectric composites via conglutinated carbon nanotube webs. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8323-8330	13	34
184	A Kinetically Stable Macrocycle Self-Assembled in Water. <i>Organic Letters</i> , 2018 , 20, 2356-2359	6.2	20
183	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. <i>Macromolecules</i> , 2018 , 51, 1598-1604	5.5	64
182	Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. <i>Energy and Environmental Science</i> , 2018 , 11, 841-849	35.4	190
181	Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. <i>Dyes and Pigments</i> , 2018 , 153, 92-98	4.6	11
180	Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4443-4448	13	50
179	Organic Light-Emitting Diodes: Achieving Nearly 30% External Quantum Efficiency for OrangeRed Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids (Adv. Mater. 5/2018). Advanced Materials, 2018,	24	6
178	30, 1870033 9,9'-Bifluorenylidene-Core Perylene Diimide Acceptors for As-Cast Non-Fullerene Organic Solar Cells: The Isomeric Effect on Optoelectronic Properties. <i>Chemistry - A European Journal</i> , 2018 , 24, 4149-	4186	24
177	Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2468-2475	13	133
176	High-efficiency and air stable fullerene-free ternary organic solar cells. <i>Nano Energy</i> , 2018 , 45, 177-183	17.1	169
175	Fine-Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54. <i>Advanced Materials</i> , 2018 , 30, 1706124	24	232
174	An efficient exciton harvest route for high-performance OLEDs based on aggregation-induced delayed fluorescence. <i>Chemical Communications</i> , 2018 , 54, 1379-1382	5.8	66
173	Effects of Different Unsaturated-Linker-Containing Donors on Electronic Properties of Benzobisthiadiazole-Based Copolymers. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700474	2.6	4
172	Novel Econjugated Polymer Based on an Extended Thienoquinoid. <i>Chemistry of Materials</i> , 2018 , 30, 319-323	9.6	11
171	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a VOC over 1.0 V. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1136-1142	7.1	39
170	Regulating the optoelectronic properties of small molecule donors with multiple alternative electron-donor and acceptor units for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8101	-8108	2
169	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6874-6881	13	26
168	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. <i>Journal of Materials Chemistry C</i> 2018, 6, 4479, 4484	7.1	14

167	A specific bioprobe for super-resolution fluorescence imaging of lipid droplets. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 3148-3154	8.5	30
166	A new small molecule acceptor based on indaceno[2,1-b:6,5-b]dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. <i>Dyes and Pigments</i> , 2018 , 148, 263-269	4.6	16
165	De novo design of small molecule acceptors via fullerene/non-fullerene hybrids for polymer solar cells. <i>Chemical Communications</i> , 2018 , 54, 9801-9804	5.8	10
164	Asymmetric thieno[2,3-b]thiophene-based electron acceptor featuring a seven fused-ring electron donor unit as core for nonfullerene organic photovoltaics. <i>Organic Electronics</i> , 2018 , 62, 82-88	3.5	14
163	Boosting the electroluminescence efficiency of solution-processed thermally activated delayed fluorescence OLEDs with a versatile hole-transporting layer of organicshorganic hybrid perovskite. Journal of Materials Chemistry C, 2018 , 6, 6305-6311	7.1	3
162	Using Simple Fused-Ring Thieno[2,3-d]pyrimidine to Construct Orange/Red Ir(III) Complexes: High-Performance Red Organic Light-Emitting Diodes with EQEs up to Nearly 28%. <i>Advanced Optical Materials</i> , 2018 , 6, 1800108	8.1	22
161	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. <i>Chemistry of Materials</i> , 2018 , 30, 3294-3300	9.6	50
160	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. <i>Chemical Science</i> , 2018 , 9, 8142-81	4 9 4	56
159	Regulating the electron transporting properties of indacenodithiophene derivatives for perovskite solar cells with PCEs up to 19.51%. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18044-18049	13	20
158	Design Strategy for Solution-Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1800568	8.1	129
157	Near-Infrared Small Molecule Acceptor Enabled High-Performance Nonfullerene Polymer Solar Cells with Over 13% Efficiency. <i>Advanced Functional Materials</i> , 2018 , 28, 1803128	15.6	70
156	Revealing the new potential of an indandione unit for constructing efficient yellow thermally activated delayed fluorescence emitters with short emissive lifetimes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7111-7118	7.1	14
155	Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs. <i>Chemical Science</i> , 2018 , 9, 1385-1391	9.4	96
154	Achieving Nearly 30% External Quantum Efficiency for Orange-Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids. <i>Advanced Materials</i> , 2018 , 30, 1704961	24	385
153	A Cu-NHC based phosphorescent binuclear iridium(iii)/copper(i) complex with an unpredictable near-linear two-coordination mode. <i>Dalton Transactions</i> , 2018 , 47, 17299-17303	4.3	8
152	Designing dual emitting cores for highly efficient thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2018 , 6, 11615-11621	7.1	21
151	Thieno[3,2-b]thiophene-Bridged Conjugated Polymers Based on Dithieno[3,2-b:2?,3?-d]silole and Thieno[3,4-c]pyrrole-4,6-dione for Polymer Solar Cells: Influence of Side Chains on Optoelectronic Properties. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1800297	2.6	6
150	Molecular iodine-mediated formal [2+1+1+1] cycloaddition access to pyrrolo[2,1-a]isoquinolines with DMSO as the methylene source. <i>Chemical Communications</i> , 2018 , 54, 11897-11900	5.8	33

149	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. <i>Nature Communications</i> , 2018 , 9, 5234	17.4	182
148	Efficient Ternary Organic Solar Cells with Two Compatible Non-Fullerene Materials as One Alloyed Acceptor. <i>Small</i> , 2018 , 14, e1802983	11	48
147	Incorporating Thermally Activated Delayed Fluorescence into Mechanochromic Luminescent Emitters: High-Performance Solution-Processed Yellow Organic Light Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1801071	8.1	28
146	High-Performance All-Polymer Solar Cells with a High Fill Factor and a Broad Tolerance to the Donor/Acceptor Ratio. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 38302-38309	9.5	26
145	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11111-11117	7.1	13
144	Over 13% Efficiency Ternary Nonfullerene Polymer Solar Cells with Tilted Up Absorption Edge by Incorporating a Medium Bandgap Acceptor. <i>Advanced Energy Materials</i> , 2018 , 8, 1801968	21.8	157
143	High-performance n-type thermoelectric composites of acridones with tethered tertiary amines and carbon nanotubes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20161-20169	13	39
142	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. <i>Energy and Environmental Science</i> , 2018 , 11, 3275-3282	35.4	227
141	Coulombic-enhanced hetero radical pairing interactions. <i>Nature Communications</i> , 2018 , 9, 1961	17.4	21
140	Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1707353	24	226
139	Emitters with a pyridine-3,5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 \mathbb{E}: orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6543-6548	7.1	46
138	Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11751-11758	13	29
137	Ternary nonfullerene polymer solar cells with efficiency >13.7% by integrating the advantages of the materials and two binary cells. <i>Energy and Environmental Science</i> , 2018 , 11, 2134-2141	35.4	193
136	Asymmetrical Ladder-Type Donor-Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for High-Performance Nonfullerene Polymer Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1800052	24	199
135	Tuning the Photoinduced Electron Transfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch and Turn-On Sensor. <i>Advanced Materials</i> , 2018 , 30, e1802329	24	81
134	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8877-8886	16.4	102
133	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. <i>ACS Energy Letters</i> , 2018 , 3, 1760-1768	20.1	90
132	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. <i>Chemical Science</i> , 2018 , 9, 6150-6155	9.4	90

131	Side-Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. <i>Advanced Energy Materials</i> , 2018 , 8, 1800856	21.8	104
130	Inheriting the Characteristics of TADF Small Molecule by Side-Chain Engineering Strategy to Enable Bluish-Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Light-Emitting Diodes. <i>Advanced Materials</i> , 2017 , 29, 1604223	24	177
129	Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1363-1368	7.1	92
128	Tuning the emission from local excited-state to charge-transfer state transition in quinoxaline-based butterfly-shaped molecules: Efficient orange OLEDs based on thermally activated delayed fluorescence emitter. <i>Dyes and Pigments</i> , 2017 , 141, 325-332	4.6	25
127	Tuning the twist angle of thermally activated delayed fluorescence molecules via a dendronization strategy: high-efficiency solution-processed non-doped OLEDs. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3480-3487	7.1	38
126	Naphthothiadiazole-Based Near-Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. <i>Advanced Functional Materials</i> , 2017 , 27, 1606384	15.6	136
125	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. <i>Solar Rrl</i> , 2017 , 1, 1700044	7.1	187
124	Self-Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for High-Efficiency All-Solution-Processed Polymer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2017 , 27, 1700695	15.6	18
123	Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative. <i>Biosensors and Bioelectronics</i> , 2017 , 90, 245-250	11.8	38
122	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregation-Induced Emission for High-Efficiency, Low Efficiency Roll-Off OLEDs. <i>Advanced Optical Materials</i> , 2017 , 5, 1700145	8.1	39
121	Tuning emissive characteristics and singlet-triplet energy splitting of fluorescent emitters by encapsulation group modification: Yellow TADF emitter for solution-processed OLEDs with high luminance and ultraslow efficiency roll-off. <i>Dyes and Pigments</i> , 2017 , 139, 593-600	4.6	16
120	Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4967-4973	6.4	38
119	Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10715-10720	7.1	74
118	Precise Exciton Allocation for Highly Efficient White Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. <i>Advanced Optical Materials</i> , 2017 , 5, 1700415	8.1	78
117	Simple InCl Doped PEDOT:PSS and UV-Ozone Treatment Strategy: External Quantum Efficiency up to 21% for Solution-Processed Organic Light-Emitting Devices with a Thermally Activated Delayed Fluorescence Emitter. <i>ACS Applied Materials & Description</i> (2017), 9, 34139-34145	9.5	17
116	Highly efficient red iridium(III) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10220-10224	7.1	43
115	Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. <i>ACS Applied Materials & Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & Device Performance of Organic Semiconductor Acceptors in Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & Device Performance Semiconductor Acceptors in Organic Semiconductor Acceptors in Organic Semiconductor Acceptors in Organic Semiconductor Acceptor Accepto</i>	9.5	36
114	Side Group Engineering of Small Molecular Acceptors for High-Performance Fullerene-Free Polymer Solar Cells: Thiophene Being Superior to Selenophene. <i>Advanced Functional Materials</i> , 2017 , 27, 1702194	15.6	81

113	A red thermally activated delayed fluorescence material as a triplet sensitizer for triplet annihilation up-conversion with high efficiency and low energy loss. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12674-12677	7.1	26
112	Pure Organic Emitter with Simultaneous Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence: Thermal-Controlled Triplet Recycling Channels. <i>Advanced Optical Materials</i> , 2017 , 5, 1700588	8.1	39
111	Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12204-12210	7.1	51
110	Isomeric small molecule acceptors based on perylene diimide and spirobifluorene for non-fullerene organic solar cells. <i>Dyes and Pigments</i> , 2017 , 146, 151-158	4.6	14
109	Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 749-75	5 6 .8	38
108	Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. <i>Organic Electronics</i> , 2017 , 41, 166-172	3.5	49
107	Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter. <i>Chemical Communications</i> , 2016 , 52, 11012-5	5.8	88
106	Manipulating the LUMO distribution of quinoxaline-containing architectures to design electron transport materials: Efficient blue phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2016 , 37, 439-447	3.5	15
105	Triazine-core-containing star-shaped compounds as cathode interlayers for efficient inverted polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 11278-11283	7.1	6
104	Management of Singlet and Triplet Excitons: A Universal Approach to High-Efficiency All Fluorescent WOLEDs with Reduced Efficiency Roll-Off Using a Conventional Fluorescent Emitter. <i>Advanced Optical Materials</i> , 2016 , 4, 1067-1074	8.1	72
103	Zn(2+)-cyclen-based complex enable a selective detection of single-stranded thymine-rich DNA in aqueous buffer. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 792-797	11.8	15
102	Dithieno[3,2-:2',3'-]pyridin-5(4)-one based D-A type copolymers with wide bandgaps of up to 2.05 eV to achieve solar cell efficiencies of up to 7.33. <i>Chemical Science</i> , 2016 , 7, 6167-6175	9.4	41
101	Simple pyridine hydrochlorides as bifunctional electron injection and transport materials for high-performance all-solution-processed organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6224-6229	7.1	12
100	High-Performance Hybrid White Organic Light-Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Roll-Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. <i>Advanced Functional Materials</i> , 2016 , 26, 3306-3313	15.6	146
99	Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1482-1489	7.1	22
98	Deep-red iridium(III) complexes cyclometalated by phenanthridine derivatives for highly efficient solution-processed organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3492-3498	7.1	47
97	The end-capped group effect on dithienosilole trimer based small molecules for efficient organic photovoltaics. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1972-1978	7.1	15
96	Benzobisthiadiazole-alt-bithiazole copolymers with deep HOMO levels for good-performance field-effect transistors with air stability and a high on/off ratio. <i>Polymer Chemistry</i> , 2016 , 7, 2808-2814	4.9	17

95	Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2442-2446	7.1	126
94	Creating a thermally activated delayed fluorescence channel in a single polymer system to enhance exciton utilization efficiency for bluish-green electroluminescence. <i>Chemical Communications</i> , 2016 , 52, 2292-5	5.8	140
93	Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off. <i>Chemistry - A European Journal</i> , 2016 , 22, 10860-6	4.8	94
92	Tailoring Optoelectronic Properties of Phenanthroline-Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. <i>Advanced Optical Materials</i> , 2016 , 4, 1558-1566	8.1	45
91	Narrow band-gap copolymers with two acceptors of benzo[1,2-c;3,4-c?]bis[1,2,5]thiadiazole and Benzo[c][1,2,5] thiadiazole: Synthesis, characteristics and application in field-effect transistors. <i>Dyes and Pigments</i> , 2016 , 130, 291-297	4.6	8
90	Switching monomer/excimer ratiometric fluorescence to time-resolved excimer probe for DNA detection: A simple strategy to enhance the sensitivity. <i>Sensors and Actuators B: Chemical</i> , 2016 , 224, 31-36	8.5	20
89	Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4402-4407	7.1	120
88	Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels. <i>Chemical Science</i> , 2016 , 7, 5441-5447	9.4	154
87	Managing Excitons and Charges for High-Performance Fluorescent White Organic Light-Emitting Diodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 28780-28788	9.5	49
86	Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 999	8 ⁷ 11000)4 ¹
85	Enabling the Triplet of Tetraphenylethene to Sensitize the Excited State of Europium(III) for Protein Detection and Time-Resolved Luminescence Imaging. <i>Advanced Science</i> , 2016 , 3, 1600146	13.6	28
84	Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance. <i>Polymer Chemistry</i> , 2015 , 6, 6050-6057	4.9	15
83	Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: high efficiency deep-red phosphorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7589-7596	7.1	22
82	Benzo[1,2-b:4,5-b?]dithiophene and Thieno[3,4-c]pyrrole-4,6-dione Based Donor-FAcceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation. <i>Macromolecules</i> , 2015 , 48, 2948-2957	5.5	56
81	Tetraphenylethene-based Zn complexes for the highly sensitive detection of single-stranded DNA. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11902-11906	7.1	11
80	Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation. <i>Organic Electronics</i> , 2015 , 26, 400-407	3.5	18
79	Dithieno[3,2-b:2?,3?-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20516-20526	13	30
78	Near-Infrared Polymer Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-off by Using Solution-Processed Iridium(III) Phosphors. <i>Chemistry of Materials</i> , 2015 , 27, 96-104	9.6	99

77	Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells. <i>Scientific Reports</i> , 2015 , 5, 17329	4.9	6
76	Star-Shaped Macromolecules with the Core of Hexakis-(fluoren-2-yl)benzene and the Periphery of Pyridine: Synthesis and Application as Solution-Processable Electron-Transport Materials. Macromolecular Rapid Communications, 2015, 36, 1658-63	4.8	9
75	Adamantane-based wide-bandgap host material: blue electrophosphorescence with high efficiency and very high brightness. <i>Chemistry - A European Journal</i> , 2015 , 21, 8250-6	4.8	18
74	In Situ Solid-State Generation of (BN)2 -Pyrenes and Electroluminescent Devices. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15074-8	16.4	90
73	Using an organic molecule with low triplet energy as a host in a highly efficient blue electrophosphorescent device. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2147-51	16.4	69
72	High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. <i>Chemistry of Materials</i> , 2014 , 26, 14	63 ⁻⁶ 47	0 ⁶³
71	Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. <i>Chemical Society Reviews</i> , 2014 , 43, 6439-69	58.5	358
70	Highly Efficient Simple-Structure Blue and All-Phosphor Warm-White Phosphorescent Organic Light-Emitting Diodes Enabled by Wide-Bandgap Tetraarylsilane-Based Functional Materials. <i>Advanced Functional Materials</i> , 2014 , 24, 5710-5718	15.6	54
69	Low Turn-on Voltage, High-Power-Efficiency, Solution-Processed Deep-Blue Organic Light-Emitting Diodes Based on Starburst Oligofluorenes with Diphenylamine End-Capper to Enhance the HOMO Level. <i>Chemistry of Materials</i> , 2014 , 26, 3074-3083	9.6	106
68	Using an Organic Molecule with Low Triplet Energy as a Host in a Highly Efficient Blue Electrophosphorescent Device. <i>Angewandte Chemie</i> , 2014 , 126, 2179-2183	3.6	16
67	Efficient Solution-Processed Deep-Blue Organic Light-Emitting Diodes Based on Multibranched Oligofluorenes with a Phosphine Oxide Center. <i>Chemistry of Materials</i> , 2013 , 25, 3320-3327	9.6	69
66	Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy: host materials for efficient blue phosphorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 463-469	7.1	50
65	High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[d]thiazole Ligands. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 191	3 4 :891	4 ⁶²
64	Highly efficient, solution-processed orangefied phosphorescent OLEDs by using new iridium phosphor with thieno[3,2-c]pyridine derivative as cyclometalating ligand. <i>Organic Electronics</i> , 2013 , 14, 3392-3398	3.5	28
63	Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. <i>Chemical Society Reviews</i> , 2013 , 42, 4963-76	58.5	643
62	Highly efficient solution-processable organic light-emitting devices with pincer-type cyclometalated platinum(II) arylacetylide complexes. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1754-9	4.5	18
61	Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices. <i>Applied Physics Letters</i> , 2013 , 102, 013307	3.4	18
60	Unexpected Propeller-Like Hexakis(fluoren-2-yl)benzene Cores for Six-Arm Star-Shaped Oligofluorenes: Highly Efficient Deep-Blue Fluorescent Emitters and Good Hole-Transporting Materials. <i>Advanced Functional Materials</i> , 2013 , 23, 1781-1788	15.6	110

59	Efficient electron injection layer based on thermo-cleavable materials for inverted bottom-emission polymer light emitting diodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6413		12
58	Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 2012 , 22, 2894-2899		97
57	Solution-Processed Double-Silicon-Bridged Oxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence. <i>Chemistry of Materials</i> , 2012 , 24, 3120-3127	9.6	52
56	Triphenylamine Dendronized Iridium(III) Complexes: Robust Synthesis, Highly Efficient Nondoped Orange Electrophosphorescence and the Structure Property Relationship. <i>Chemistry of Materials</i> , 2012 , 24, 174-180	9.6	86
55	Highly efficient single-layer white polymer light-emitting devices employing triphenylamine-based iridium dendritic complexes as orange emissive component. <i>Journal of Materials Chemistry</i> , 2012 , 22, 361-366		49
54	Phosphoryl/Sulfonyl-Substituted Iridium Complexes as Blue Phosphorescent Emitters for Single-Layer Blue and White Organic Light-Emitting Diodes by Solution Process. <i>Chemistry of Materials</i> , 2012 , 24, 4581-4587	9.6	126
53	Star-shaped hexakis(9,9-dihexyl-9H-fluoren-2-yl)benzene end-capped with carbazole and diphenylamine units: solution-processable, high Tg hole-transporting materials for organic light-emitting devices. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23485		44
52	Water-soluble fluorene-based copolymers incorporated methoxyphenol moieties: Novel polymeric chemodosimeters for hypochlorous acid. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1174-1180	2.5	4
51	Tuning the energy levels and photophysical properties of triphenylamine-featured iridium(III) complexes: application in high performance polymer light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11128		28
50	Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off. <i>Applied Physics Letters</i> , 2012 , 100, 063304	3.4	18
49	Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6409		58
48	Organic host materials for phosphorescent organic light-emitting diodes. <i>Chemical Society Reviews</i> , 2011 , 40, 2943-70	58.5	983
47	Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off. <i>Advanced Functional Materials</i> , 2011 , 21, 1168-1178	15.6	215
46	High-Performance, Phosphorescent, Top-Emitting Organic Light-Emitting Diodes with p IB Homojunctions. <i>Advanced Functional Materials</i> , 2011 , 21, 1681-1686	15.6	33
45	Highly efficient deep-blue electrophosphorescence enabled by solution-processed bipolar tetraarylsilane host with both a high triplet energy and a high-lying HOMO level. <i>Advanced Materials</i> , 2011 , 23, 4956-9	24	137
44	Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9326		56
43	High-performance blue and green electrophosphorescence achieved by using carbazole-containing bipolar tetraarylsilanes as host materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11197		32
42	Managing Charge Balance and Triplet Excitons to Achieve High-Power-Efficiency Phosphorescent Organic Light-Emitting Diodes. <i>ACS Applied Materials & Discrete Section</i> , 2, 2813-2818	9.5	28

41	Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1759		116
40	Controlling charge balance and exciton recombination by bipolar host in single-layer organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2010 , 108, 034508	2.5	63
39	Diarylmethylene-bridged triphenylamine derivatives encapsulated with fluorene: very high Tg host materials for efficient blue and green phosphorescent OLEDs. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3232		57
38	Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Exciton-Blocking Material: High Efficiency Green Phosphorescent OLEDs Using Easily Available and Common Materials. <i>Advanced Functional Materials</i> , 2010 , 20, 2923-2929	15.6	148
37	De novo design of silicon-bridged molecule towards a bipolar host: all-phosphor white organic light-emitting devices exhibiting high efficiency and low efficiency roll-off. <i>Advanced Materials</i> , 2010 , 22, 5370-3	24	145
36	Copolyfluorenes containing bridged triphenylamine or triphenylamine: Synthesis, characterization, and optoelectronic properties. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 3651-3661	2.5	21
35	Diarylmethylene-bridged 4,4?-(bis(9-carbazolyl))biphenyl: morphological stable host material for highly efficient electrophosphorescence. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7661		18
34	First Iridium Complex End-Capped Polyfluorene: Improving Device Performance for Phosphorescent Polymer Light-Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3907-3913	3.8	30
33	Solution-processable highly efficient yellow- and red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4091		75
32	Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing PLED performance and structure property relationships. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3366		22
31	Stable white electroluminescence from single fluorene-based copolymers: using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the main chain. <i>Journal of Materials Chemistry</i> , 2008 , 18, 291-298		69
30	An inorganic@rganic intercalated nanocomposite, BEDT-TTF into layered MnPS3. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2008 , 62, 293-296		8
29	Synthesis of Spirobifluorene-alt-Carbazole Copolymers with Oxadiazole Pendants and their Thermal, Electrochemical, and Photoluminescent Properties. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1817-1822	4.8	7
28	A simple carbazole/oxadiazole hybrid molecule: an excellent bipolar host for green and red phosphorescent OLEDs. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8104-7	16.4	405
27	A Simple Carbazole/Oxadiazole Hybrid Molecule: An Excellent Bipolar Host for Green and Red Phosphorescent OLEDs. <i>Angewandte Chemie</i> , 2008 , 120, 8224-8227	3.6	76
26	Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3451		48
25	Novel, highly efficient blue-emitting heteroleptic iridium(III) complexes based on fluorinated 1,3,4-oxadiazole: tuning to blue by dithiolate ancillary ligands. <i>Chemical Communications</i> , 2007 , 1352-4	5.8	89
24	The intercalation of transition metal salen complexes into layered MoS2. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2007 , 59, 217-222		2

23	Saturated Red-Emitting Electrophosphorescent Polymers with Iridium Coordinating to Diketonate Units in the Main Chain. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1926-1931	4.8	45
22	Synthesis, structure, electrochemistry, photophysics and electroluminescence of 1,3,4-oxadiazole-based ortho-metalated iridium(III) complexes. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 3519-3530	2.3	55
21	Highly efficient iridium(III) complexes with diphenylquinoline ligands for organic light-emitting diodes: Synthesis and effect of fluorinated substitutes on electrochemistry, photophysics and electroluminescence. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4312-4319	2.3	44
20	Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium(III) complexes and their application in OLEDs. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3332		66
19	Synthesis and characterization of intercalation compounds of stilbazolium chromophores into layered vanadyl phosphate. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1637		3
18	A New Organic-Inorganic Hybrid Nanocomposite, BEDT-TTF Intercalated into Layered FePS3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005 , 53, 205-209		6
17	The Characterization and Magnetic Properties of Inorganic-Organic Hybrid Nanocomposites, Stilbazoliums Inserted into Layered FePS 3. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2002 , 42, 71-75		3
16	Synthesis of ECyclodextrin-Functionalized (2S,4S)-(I)-4-(Diphenylphosphino)-2-(diphenylphosphino)-pyrrolidine Ligands and Their Rhodium and Platinum Complexes. <i>Organometallics</i> , 2001 , 20, 5220-5224	3.8	10
15	Electron Paramagnetic Resonance Study of Magnetic Ordering in MnPS3, Mn0.79PS3(4,4?-bipy)0.42 and Mn0.84PS3(1,10-Phen)0.64 Compounds. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 341, 119-124		5
14	Electron Magnetic Resonance Studies of the Intercalation Ferromagnet 2,2?-bipyridine-MnPS3 Above and Below Curie Temperature. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 348, 295-300		
13	Multiple Resonance TADF Sensitizers Enable Green-to-UV Photon Upconversion: Application in Photochemical Transformations. <i>CCS Chemistry</i> ,1-30	7.2	3
12	Manipulating Ffster and Dexter interactions between a thermally activated delayed fluorescence host and a phosphorescent dopant for highly efficient solution-processed red and white OLEDs. <i>Journal of Materials Chemistry C</i> ,	7.1	1
11	Molecular Engineering Enables TADF Emitters Well Suitable for Non-Doped OLEDs with External Quantum Efficiency of Nearly 30%. <i>Advanced Functional Materials</i> ,2112881	15.6	3
10	Metal®rganic Framework Based Thermally Activated Delayed Fluorescence Emitter with Oxygen-Insensitivity for Cell Imaging. <i>Advanced Optical Materials</i> ,2101992	8.1	O
9	Host-Dopant Interaction between Organic Thermally Activated Delayed Fluorescence Emitter and Host Material: Insight into the Excited State. <i>Advanced Optical Materials</i> ,2101343	8.1	3
8	Copper(I) Complex as Sensitizer Enables High-Performance Organic Light-Emitting Diodes with Very Low Efficiency Roll-Off. <i>Advanced Functional Materials</i> ,2106345	15.6	3
7	Simple Acridan-Based Multi-Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence. <i>Advanced Optical Materials</i> ,2100825	8.1	20
6	Reversibly Photoswitchable Tristate Fluorescence within a Single Polymeric Nanoparticle. <i>Advanced Optical Materials</i> ,2101227	8.1	5

LIST OF PUBLICATIONS

5	Photoswitchable Thermally Activated Delayed Fluorescence Nanoparticles for D ouble-Check Confocal and Time-Resolved Luminescence Bioimaging. <i>Advanced Optical Materials</i> , 2102437	8.1	2
4	Versatile boron-based thermally activated delayed fluorescence materials for organic light-emitting diodes. <i>Aggregate</i> ,	22.9	4
3	Simple Double Hetero[5]helicenes Realize Highly Efficient and Narrowband Circularly Polarized Organic Light-Emitting Diodes. <i>CCS Chemistry</i> ,1-9	7.2	7
2	Heteroheptacene-based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells. <i>National Science Review</i> ,	10.8	6
1	Sulfone-Incorporated Multi-Resonance TADF Emitter for High-Performance Narrowband Blue OLEDs with EQE of 32%. <i>Advanced Functional Materials</i> ,2201032	15.6	8