Chuluo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic host materials for phosphorescent organic light-emitting diodes. Chemical Society Reviews, 2011, 40, 2943.	18.7	1,123
2	Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chemical Society Reviews, 2013, 42, 4963.	18.7	748
3	Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids. Advanced Materials, 2018, 30, 1704961.	11.1	488
4	A Simple Carbazole/Oxadiazole Hybrid Molecule: An Excellent Bipolar Host for Green and Red Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2008, 47, 8104-8107.	7.2	425
5	Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chemical Society Reviews, 2014, 43, 6439-6469.	18.7	401
6	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	11.7	344
7	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. Nature Communications, 2018, 9, 5234.	5.8	293
8	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	11.1	282
9	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	11.7	272
10	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	11.1	271
11	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	15.6	261
12	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	11.1	253
13	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	11.1	252
14	Alloy-like ternary polymer solar cells with over 17.2% efficiency. Science Bulletin, 2020, 65, 538-545.	4.3	252
15	Quenchingâ€Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level. Advanced Materials, 2022, 34, e2106954.	11.1	235
16	Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Rollâ€Off. Advanced Functional Materials, 2011, 21, 1168-1178.	7.8	229
17	Ternary nonfullerene polymer solar cells with efficiency >13.7% by integrating the advantages of the materials and two binary cells. Energy and Environmental Science, 2018, 11, 2134-2141.	15.6	223
18	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	15.6	213

#	Article	IF	CITATIONS
19	Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy and Environmental Science, 2018, 11, 841-849.	15.6	210
20	Inheriting the Characteristics of TADF Small Molecule by Sideâ€Chain Engineering Strategy to Enable Bluishâ€Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604223.	11.1	207
21	Design Strategy for Solutionâ€Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800568.	3.6	199
22	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	3.1	198
23	Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy and Environmental Science, 2020, 13, 958-967.	15.6	198
24	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications, 2020, 11, 1218.	5.8	197
25	High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy, 2018, 45, 177-183.	8.2	193
26	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy and Environmental Science, 2019, 12, 384-395.	15.6	193
27	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	8.8	188
28	Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels. Chemical Science, 2016, 7, 5441-5447.	3.7	180
29	Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy, 2019, 55, 424-432.	8.2	179
30	Realizing 22.5% External Quantum Efficiency for Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Advanced Materials, 2019, 31, e1901404.	11.1	175
31	Naphthothiadiazoleâ€Based Nearâ€Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. Advanced Functional Materials, 2017, 27, 1606384.	7.8	173
32	Over 13% Efficiency Ternary Nonfullerene Polymer Solar Cells with Tilted Up Absorption Edge by Incorporating a Medium Bandgap Acceptor. Advanced Energy Materials, 2018, 8, 1801968.	10.2	167
33	Creating a thermally activated delayed fluorescence channel in a single polymer system to enhance exciton utilization efficiency for bluish-green electroluminescence. Chemical Communications, 2016, 52, 2292-2295.	2.2	160
34	Achieving 21% External Quantum Efficiency for Nondoped Solutionâ€Processed Skyâ€Blue Thermally Activated Delayed Fluorescence OLEDs by Means of Multiâ€(Donor/Acceptor) Emitter with Throughâ€Space/â€Bond Charge Transfer. Advanced Science, 2020, 7, 1902087.	5.6	160
35	Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Excitonâ€Blocking Material: High Efficiency Green Phosphorescent OLEDs Using Easily Available and Common Materials. Advanced Functional Materials, 2010, 20, 2923-2929.	7.8	159
36	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	7.8	157

#	Article	IF	CITATIONS
37	Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Rollâ€Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. Advanced Functional Materials, 2016, 26, 3306-3313.	7.8	154
38	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	6.6	153
39	Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 2442-2446.	2.7	150
40	De Novo Design of Siliconâ€Bridged Molecule Towards a Bipolar Host: Allâ€Phosphor White Organic Lightâ€Emitting Devices Exhibiting High Efficiency and Low Efficiency Rollâ€Off. Advanced Materials, 2010, 22, 5370-5373.	11.1	149
41	Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. Journal of Materials Chemistry A, 2018, 6, 2468-2475.	5.2	145
42	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	10.2	144
43	Highly Efficient Deepâ€Blue Electrophosphorescence Enabled by Solutionâ€Processed Bipolar Tetraarylsilane Host with Both a High Triplet Energy and a High‣ying HOMO Level. Advanced Materials, 2011, 23, 4956-4959.	11.1	142
44	Phosphoryl/Sulfonyl-Substituted Iridium Complexes as Blue Phosphorescent Emitters for Single-Layer Blue and White Organic Light-Emitting Diodes by Solution Process. Chemistry of Materials, 2012, 24, 4581-4587.	3.2	138
45	Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. Journal of Materials Chemistry C, 2016, 4, 4402-4407.	2.7	136
46	Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs. Chemical Science, 2018, 9, 1385-1391.	3.7	132
47	Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. Chemical Science, 2019, 10, 2342-2348.	3.7	132
48	Highâ€Performance Narrowband Pureâ€Red OLEDs with External Quantum Efficiencies up to 36.1% and Ultralow Efficiency Rollâ€Off. Advanced Materials, 2022, 34, e2201442.	11.1	131
49	Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. Journal of Materials Chemistry A, 2019, 7, 7843-7851.	5.2	130
50	A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation. Advanced Functional Materials, 2020, 30, 1908839.	7.8	129
51	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	4.2	128
52	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angewandte Chemie - International Edition, 2019, 58, 17651-17655.	7.2	124
53	Near-Infrared Polymer Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-off by Using Solution-Processed Iridium(III) Phosphors. Chemistry of Materials, 2015, 27, 96-104.	3.2	122
54	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chemical Engineering Journal, 2021, 426, 131169.	6.6	122

#	Article	IF	CITATIONS
55	Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 1759.	6.7	120
56	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	11.1	120
57	Sideâ€Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	10.2	118
58	Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 1363-1368.	2.7	116
59	Unexpected Propellerâ€Like Hexakis(fluorenâ€2â€yl)benzene Cores for Sixâ€Arm Starâ€Shaped Oligofluorenes: Highly Efficient Deepâ€Blue Fluorescent Emitters and Good Holeâ€Transporting Materials. Advanced Functional Materials, 2013, 23, 1781-1788.	7.8	115
60	Faceâ€ŧoâ€Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 3994-3998.	7.2	112
61	Low Turn-on Voltage, High-Power-Efficiency, Solution-Processed Deep-Blue Organic Light-Emitting Diodes Based on Starburst Oligofluorenes with Diphenylamine End-Capper to Enhance the HOMO Level. Chemistry of Materials, 2014, 26, 3074-3083.	3.2	111
62	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	1.7	111
63	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. Chemical Science, 2018, 9, 6150-6155.	3.7	111
64	Extending the Ï€â€Skeleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	110
65	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	5.2	107
66	Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 2012, 22, 2894-2899.	6.7	106
67	Inâ€Situ Solidâ€State Generation of (BN) ₂ â€Pyrenes and Electroluminescent Devices. Angewandte Chemie - International Edition, 2015, 54, 15074-15078.	7.2	105
68	Achieving a balance between small singlet–triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter. Chemical Communications, 2016, 52, 11012-11015.	2.2	105
69	Unconjugated Sideâ€Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Nonâ€Fullerene Organic Solar Cells: Insights into the Fineâ€Funing of Acceptor Properties and Micromorphology. Advanced Functional Materials, 2019, 29, 1902155.	7.8	105
70	Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property. Journal of Physical Chemistry Letters, 2018, 9, 1547-1553.	2.1	103
71	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	10.2	103
72	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. ACS Energy Letters, 2018, 3, 1760-1768.	8.8	102

#	Article	IF	CITATIONS
73	Self-Assembly of a Highly Emissive Pure Organic Imine-Based Stack for Electroluminescence and Cell Imaging. Journal of the American Chemical Society, 2019, 141, 4704-4710.	6.6	101
74	Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. Journal of Materials Chemistry C, 2017, 5, 10715-10720.	2.7	96
75	Precise Exciton Allocation for Highly Efficient White Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Advanced Optical Materials, 2017, 5, 1700415.	3.6	95
76	Novel, highly efficient blue-emitting heteroleptic iridium(iii) complexes based on fluorinated 1,3,4-oxadiazole: tuning to blue by dithiolate ancillary ligands. Chemical Communications, 2007, , 1352.	2.2	94
77	Thickâ€Film Organic Solar Cells Achieving over 11% Efficiency and Nearly 70% Fill Factor at Thickness over 400 nm. Advanced Functional Materials, 2020, 30, 1908336.	7.8	94
78	Organic Thermally Activated Delayed Fluorescence Materials for Timeâ€Resolved Luminescence Imaging and Sensing. Advanced Optical Materials, 2020, 8, 1902187.	3.6	91
79	Triphenylamine Dendronized Iridium(III) Complexes: Robust Synthesis, Highly Efficient Nondoped Orange Electrophosphorescence and the Structure–Property Relationship. Chemistry of Materials, 2012, 24, 174-180.	3.2	90
80	Side Group Engineering of Small Molecular Acceptors for Highâ€Performance Fullereneâ€Free Polymer Solar Cells: Thiophene Being Superior to Selenophene. Advanced Functional Materials, 2017, 27, 1702194.	7.8	88
81	Management of Singlet and Triplet Excitons: A Universal Approach to Highâ€Efficiency All Fluorescent WOLEDs with Reduced Efficiency Rollâ€Off Using a Conventional Fluorescent Emitter. Advanced Optical Materials, 2016, 4, 1067-1074.	3.6	84
82	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nature Communications, 2019, 10, 2380.	5.8	84
83	Efficient Solution-Processed Deep-Blue Organic Light-Emitting Diodes Based on Multibranched Oligofluorenes with a Phosphine Oxide Center. Chemistry of Materials, 2013, 25, 3320-3327.	3.2	82
84	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie - International Edition, 2020, 59, 9972-9976.	7.2	82
85	Hydrophilic, Redâ€Emitting, and Thermally Activated Delayed Fluorescence Emitter for Timeâ€Resolved Luminescence Imaging by Mitochondrionâ€Induced Aggregation in Living Cells. Advanced Science, 2019, 6, 1801729.	5.6	80
86	Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Science Advances, 2020, 6, .	4.7	80
87	Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2017, 5, 12204-12210.	2.7	79
88	Simple Acridanâ€Based Multiâ€Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence. Advanced Optical Materials, 2021, 9, 2100825.	3.6	79
89	Nearâ€Infrared Small Molecule Acceptor Enabled Highâ€Performance Nonfullerene Polymer Solar Cells with Over 13% Efficiency. Advanced Functional Materials, 2018, 28, 1803128.	7.8	78
90	Solution-processable highly efficient yellow- and red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes. Journal of Materials Chemistry, 2008, 18, 4091.	6.7	76

#	Article	IF	CITATIONS
91	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	2.2	76
92	Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. Materials Horizons, 2021, 8, 547-555.	6.4	76
93	An efficient exciton harvest route for high-performance OLEDs based on aggregation-induced delayed fluorescence. Chemical Communications, 2018, 54, 1379-1382.	2.2	75
94	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
95	Using an Organic Molecule with Low Triplet Energy as a Host in a Highly Efficient Blue Electrophosphorescent Device. Angewandte Chemie - International Edition, 2014, 53, 2147-2151.	7.2	72
96	Stable white electroluminescence from single fluorene-based copolymers: using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the main chain. Journal of Materials Chemistry, 2008, 18, 291-298.	6.7	71
97	Controlling charge balance and exciton recombination by bipolar host in single-layer organic light-emitting diodes. Journal of Applied Physics, 2010, 108, .	1.1	69
98	High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[<i>d</i>]thiazole Ligands. Journal of Physical Chemistry C, 2013, 117, 19134-19141.	1,5	69
99	Isomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	5.6	69
100	Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium(iii) complexes and their application in OLEDs. Journal of Materials Chemistry, 2006, 16, 3332.	6.7	68
101	High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 1463-1470.	3.2	68
102	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	3.7	67
103	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	4.6	67
104	Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4443-4448.	5.2	66
105	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 3294-3300.	3.2	64
106	Ternary polymer solar cells with alloyed non-fullerene acceptor exhibiting 12.99% efficiency and 76.03% fill factor. Nano Energy, 2019, 59, 58-65.	8.2	64
107	Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coordination Chemistry Reviews, 2021, 433, 213755.	9.5	64
108	Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence. Journal of Materials Chemistry, 2011, 21, 6409.	6.7	62

#	Article	IF	CITATIONS
109	Synthesis, structure, electrochemistry, photophysics and electroluminescence of 1,3,4-oxadiazole-based ortho-metalated iridium(III) complexes. Journal of Organometallic Chemistry, 2006, 691, 3519-3530.	0.8	60
110	Diarylmethylene-bridged triphenylamine derivatives encapsulated with fluorene: very high Tg host materials for efficient blue and green phosphorescent OLEDs. Journal of Materials Chemistry, 2010, 20, 3232.	6.7	60
111	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Based Donor-i€-Acceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation. Macromolecules, 2015, 48, 2948-2957.	2.2	60
112	Semitransparent Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiency over 30% and Dissymmetry Factor Close to 10 ^{â^2} . Advanced Functional Materials, 2021, 31, 2102898.	7.8	60
113	Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material. Journal of Materials Chemistry, 2011, 21, 9326.	6.7	59
114	Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels. Small, 2020, 16, e2000441.	5.2	59
115	Multifunctional Thermally Activated Delayed Fluorescence Emitters and Insight into Multicolorâ€Mechanochromism Promoted by Weak Intra―and Intermolecular Interactions. Advanced Optical Materials, 2019, 7, 1900727.	3.6	58
116	Isomerization Strategy of Nonfullerene Smallâ€Molecule Acceptors for Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2004477.	7.8	58
117	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58
118	Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy: host materials for efficient blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 463-469.	2.7	57
119	Managing Excitons and Charges for High-Performance Fluorescent White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 28780-28788.	4.0	57
120	Emitters with a pyridine-3,5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 μs: orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance. Journal of Materials Chemistry C, 2018, 6, 6543-6548.	2.7	56
121	Solution-Processed Double-Silicon-Bridged Oxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence. Chemistry of Materials, 2012, 24, 3120-3127.	3.2	55
122	Highly Efficient Simpleâ€Structure Blue and Allâ€Phosphor Warmâ€White Phosphorescent Organic Lightâ€Emitting Diodes Enabled by Wideâ€Bandgap Tetraarylsilaneâ€Based Functional Materials. Advanced Functional Materials, 2014, 24, 5710-5718.	7.8	55
123	Efficient Ternary Organic Solar Cells with Two Compatible Nonâ€Fullerene Materials as One Alloyed Acceptor. Small, 2018, 14, e1802983.	5.2	55
124	High-performance n-type thermoelectric composites of acridones with tethered tertiary amines and carbon nanotubes. Journal of Materials Chemistry A, 2018, 6, 20161-20169.	5.2	55
125	High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. Science China Chemistry, 2020, 63, 1246-1255.	4.2	55
126	AIE-active multicolor tunable luminogens: simultaneous mechanochromism and acidochromism with high contrast beyond 100 nm. Materials Chemistry Frontiers, 2020, 4, 2047-2053.	3.2	55

#	Article	IF	CITATIONS
127	Molecular iodine-mediated formal [2+1+1+1] cycloaddition access to pyrrolo[2,1- <i>a</i>]isoquinolines with DMSO as the methylene source. Chemical Communications, 2018, 54, 11897-11900.	2.2	54
128	Versatile boronâ€based thermally activated delayed fluorescence materials for organic lightâ€emitting diodes. Aggregate, 2022, 3, .	5.2	54
129	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	3.6	53
130	Pure Organic Emitter with Simultaneous Thermally Activated Delayed Fluorescence and Roomâ€Temperature Phosphorescence: Thermalâ€Controlled Triplet Recycling Channels. Advanced Optical Materials, 2017, 5, 1700588.	3.6	53
131	B- and N-embedded color-tunable phosphorescent iridium complexes and B–N Lewis adducts with intriguing structural and optical changes. Chemical Science, 2019, 10, 3257-3263.	3.7	53
132	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2019, 123, 10081-10086.	1.5	53
133	Sulfoneâ€Incorporated Multiâ€Resonance TADF Emitter for Highâ€Performance Narrowband Blue OLEDs with EQE of 32%. Advanced Functional Materials, 2022, 32, .	7.8	53
134	Fineâ€Tuning Batch Factors of Polymer Acceptors Enables a Binary Allâ€Polymer Solar Cell with High Efficiency of 16.11%. Advanced Energy Materials, 2022, 12, .	10.2	52
135	Highly efficient single-layer white polymer light-emitting devices employing triphenylamine-based iridium dendritic complexes as orange emissive component. Journal of Materials Chemistry, 2012, 22, 361-366.	6.7	51
136	Deep-red iridium(<scp>iii</scp>) complexes cyclometalated by phenanthridine derivatives for highly efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 3492-3498.	2.7	51
137	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregationâ€Induced Emission for Highâ€Efficiency, Low Efficiency Rollâ€Off OLEDs. Advanced Optical Materials, 2017, 5, 1700145.	3.6	51
138	Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Organic Electronics, 2017, 41, 166-172.	1.4	51
139	A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20127-20131.	5.2	51
140	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie, 2020, 132, 10058-10062.	1.6	51
141	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	5.6	51
142	Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 2016, 4, 9998-10004.	2.7	50
143	Boosting the Efficiency of Nearâ€Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizerâ€Based Cascade Energy Transfer. Advanced Functional Materials, 2018, 28, 1706088.	7.8	50
144	Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes. Journal of Materials Chemistry, 2007, 17, 3451.	6.7	49

#	Article	IF	CITATIONS
145	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	5.2	49
146	Regulating the photophysical properties of highly twisted TADF emitters by concurrent through-space/-bond charge transfer. Chemical Engineering Journal, 2020, 402, 126173.	6.6	49
147	Simple Double Hetero[5]helicenes Realize Highly Efficient and Narrowband Circularly Polarized Organic Light-Emitting Diodes. CCS Chemistry, 2022, 4, 3463-3471.	4.6	49
148	A specific bioprobe for super-resolution fluorescence imaging of lipid droplets. Sensors and Actuators B: Chemical, 2018, 255, 3148-3154.	4.0	48
149	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. Chemistry of Materials, 2019, 31, 1752-1760.	3.2	48
150	Highly efficient iridium(III) complexes with diphenylquinoline ligands for organic light-emitting diodes: Synthesis and effect of fluorinated substitutes on electrochemistry, photophysics and electroluminescence. Journal of Organometallic Chemistry, 2006, 691, 4312-4319.	0.8	47
151	Star-shaped hexakis(9,9-dihexyl-9H-fluoren-2-yl)benzene end-capped with carbazole and diphenylamine units: solution-processable, high Tg hole-transporting materials for organic light-emitting devices. Journal of Materials Chemistry, 2012, 22, 23485.	6.7	47
152	Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative. Biosensors and Bioelectronics, 2017, 90, 245-250.	5.3	47
153	Highly efficient red iridium(<scp>iii</scp>) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. Journal of Materials Chemistry C, 2017, 5, 10220-10224.	2.7	47
154	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. Nano Energy, 2019, 66, 104146.	8.2	47
155	Saturated Red-Emitting Electrophosphorescent Polymers with Iridium Coordinating tol²-Diketonate Units in the Main Chain. Macromolecular Rapid Communications, 2006, 27, 1926-1931.	2.0	46
156	Tailoring the framework of organic small molecule semiconductors towards high-performance thermoelectric composites via conglutinated carbon nanotube webs. Journal of Materials Chemistry A, 2018, 6, 8323-8330.	5.2	46
157	High-Efficiency Red Electroluminescence Based on a Carbene–Cu(I)–Acridine Complex. ACS Applied Materials & Interfaces, 2021, 13, 13478-13486.	4.0	46
158	Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host. Journal of Physical Chemistry Letters, 2017, 8, 4967-4973.	2.1	45
159	Versatile Direct Cyclization Constructs Spiroâ€acridan Derivatives for Highly Efficient TADF emitters. Angewandte Chemie - International Edition, 2021, 60, 12376-12380.	7.2	45
160	Tuning the twist angle of thermally activated delayed fluorescence molecules via a dendronization strategy: high-efficiency solution-processed non-doped OLEDs. Journal of Materials Chemistry C, 2017, 5, 3480-3487.	2.7	44
161	Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Materials Chemistry Frontiers, 2017, 1, 749-756.	3.2	44
162	Emerging circularly polarized thermally activated delayed fluorescence materials and devices. Applied Physics Letters, 2020, 117, .	1.5	44

#	Article	IF	CITATIONS
163	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one based D–A type copolymers with wide bandgaps of up to 2.05 eV achieve solar cell efficiencies of up to 7.33%. Chemical Science, 2016, 7, 6167-6175.	' to 3.7	43
164	Achieving Ecoâ€Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complexâ€Incorporated Polymer Donor. Solar Rrl, 2020, 4, 2000156.	3.1	43
165	Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 34146-34152.	4.0	42
166	Simple Molecular Design Strategy for Multiresonance Induced TADF Emitter: Highly Efficient Deep Blue to Blue Electroluminescence with High Color Purity. Advanced Optical Materials, 2022, 10, .	3.6	42
167	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	2.7	41
168	An unsymmetrical thermally activated delayed fluorescence emitter enables orange-red electroluminescence with 31.7% external quantum efficiency. Materials Horizons, 2021, 8, 2286-2292.	6.4	41
169	High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation <i>via</i> a spiro-linked double D–A molecular architecture. Journal of Materials Chemistry C, 2019, 7, 10851-10859.	2.7	40
170	Incorporating Thermally Activated Delayed Fluorescence into Mechanochromic Luminescent Emitters: Highâ€Performance Solutionâ€Processed Yellow Organic Light Emitting Diodes. Advanced Optical Materials, 2018, 6, 1801071.	3.6	39
171	Overcoming the energy loss in asymmetrical non-fullerene acceptor-based polymer solar cells by halogenation of polymer donors. Journal of Materials Chemistry A, 2019, 7, 15404-15410.	5.2	39
172	Enhancing Spin–Orbit Coupling by Introducing a Lone Pair Electron with p Orbital Character in a Thermally Activated Delayed Fluorescence Emitter: Photophysics and Devices. Journal of Physical Chemistry Letters, 2019, 10, 2669-2675.	2.1	38
173	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	5.2	37
174	Feasible Modification of PEDOT:PSS by Poly(4-styrenesulfonic acid): A Universal Method to Double the Efficiencies for Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 29105-29112.	4.0	37
175	A Highâ€Performance Nonâ€Fullerene Acceptor Compatible with Polymers with Different Bandgaps for Efficient Organic Solar Cells. Solar Rrl, 2019, 3, 1800376.	3.1	37
176	Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells <i>via</i> designing asymmetrical non-fullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 11053-11061.	5.2	37
177	Modulating the acceptor structure of dicyanopyridine based TADF emitters: Nearly 30% external quantum efficiency and suppression on efficiency roll-off in OLED. Chemical Engineering Journal, 2020, 401, 126107.	6.6	37
178	Highâ€Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. Advanced Materials, 2022, 34, e2109147.	11.1	37
179	Simultaneously High Upconversion Efficiency and Large Antiâ€Stokes Shift by Using Os(II) Complex Dyad as Triplet Photosensitizer. Advanced Optical Materials, 2020, 8, 1902157.	3.6	36
180	High-efficiency red thermally activated delayed fluorescence emitters based on benzothiophene-fused spiro-acridine donor. Chemical Engineering Journal, 2021, 405, 126663.	6.6	36

#	Article	IF	CITATIONS
181	Narrowband blue emission with insensitivity to the doping concentration from an oxygen-bridged triarylboron-based TADF emitter: nondoped OLEDs with a high external quantum efficiency up to 21.4%. Chemical Science, 2022, 13, 3402-3408.	3.7	36
182	Highâ€Performance, Phosphorescent, Topâ€Emitting Organic Lightâ€Emitting Diodes with p–i–n Homojunctions. Advanced Functional Materials, 2011, 21, 1681-1686.	7.8	35
183	Tetracoordinate Boronâ€Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
184	A red thermally activated delayed fluorescence material as a triplet sensitizer for triplet–triplet annihilation up-conversion with high efficiency and low energy loss. Journal of Materials Chemistry C, 2017, 5, 12674-12677.	2.7	34
185	Temperature-dependent self-assembly of a purely organic cage in water. Chemical Communications, 2018, 54, 3138-3141.	2.2	34
186	Thermoelectrics of two-dimensional conjugated benzodithiophene-based polymers: density-of-states enhancement and semi-metallic behavior. Journal of Materials Chemistry A, 2019, 7, 10422-10430.	5.2	34
187	Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. ACS Applied Materials & Interfaces, 2021, 13, 59035-59042.	4.0	34
188	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%. Journal of Materials Chemistry A, 2015, 3, 20516-20526.	5.2	33
189	Tuning the emission from local excited-state to charge-transfer state transition in quinoxaline-based butterfly-shaped molecules: Efficient orange OLEDs based on thermally activated delayed fluorescence emitter. Dyes and Pigments, 2017, 141, 325-332.	2.0	33
190	First Iridium Complex End-Capped Polyfluorene:  Improving Device Performance for Phosphorescent Polymer Light-Emitting Diodes. Journal of Physical Chemistry C, 2008, 112, 3907-3913.	1.5	32
191	High-performance blue and green electrophosphorescence achieved by using carbazole-containing bipolar tetraarylsilanes as host materials. Journal of Materials Chemistry, 2011, 21, 11197.	6.7	32
192	An asymmetrical fused-ring electron acceptor designed by a cross-conceptual strategy achieving 15.6% efficiency. Journal of Materials Chemistry A, 2020, 8, 14583-14591.	5.2	32
193	Molecular Engineering Enables TADF Emitters Well Suitable for Nonâ€Doped OLEDs with External Quantum Efficiency of Nearly 30%. Advanced Functional Materials, 2022, 32, .	7.8	32
194	Tuning the energy levels and photophysical properties of triphenylamine-featured iridium(iii) complexes: application in high performance polymer light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 11128.	6.7	31
195	Enabling the Triplet of Tetraphenylethene to Sensitize the Excited State of Europium(III) for Protein Detection and Timeâ€Resolved Luminescence Imaging. Advanced Science, 2016, 3, 1600146.	5.6	31
196	9,9′â€Bifluorenylidene ore Perylene Diimide Acceptors for Asâ€Cast Nonâ€Fullerene Organic Solar Cells: Th Isomeric Effect on Optoelectronic Properties. Chemistry - A European Journal, 2018, 24, 4149-4156.	¹⁰ 1.7	31
197	High-Performance All-Polymer Solar Cells with a High Fill Factor and a Broad Tolerance to the Donor/Acceptor Ratio. ACS Applied Materials & amp; Interfaces, 2018, 10, 38302-38309.	4.0	31
198	Ternary organic solar cells with J71 as donor and alloyed acceptors exhibiting 13.16% efficiency. Nano Energy, 2019, 63, 103888.	8.2	31

#	Article	IF	CITATIONS
199	Tuning the emissive characteristics of TADF emitters by fusing heterocycles with acridine as donors: highly efficient orange to red organic light-emitting diodes with EQE over 20%. Journal of Materials Chemistry C, 2019, 7, 9087-9094.	2.7	31
200	Isomerization enhanced quantum yield of dibenzo[<i>a,c</i>]phenazine-based thermally activated delayed fluorescence emitters for highly efficient orange OLEDs. Journal of Materials Chemistry C, 2020, 8, 9639-9645.	2.7	31
201	Rigid Bridgeâ€Confined Doubleâ€Decker Platinum(II) Complexes Towards Highâ€Performance Red and Nearâ€Infrared Electroluminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
202	Managing Charge Balance and Triplet Excitons to Achieve High-Power-Efficiency Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2010, 2, 2813-2818.	4.0	30
203	Coulombic-enhanced hetero radical pairing interactions. Nature Communications, 2018, 9, 1961.	5.8	30
204	Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A, 2018, 6, 11751-11758.	5.2	30
205	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angewandte Chemie, 2019, 131, 17815-17819.	1.6	30
206	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 6607-6615.	2.7	30
207	Reversibly Photoswitchable Tristate Fluorescence within a Single Polymeric Nanoparticle. Advanced Optical Materials, 2021, 9, 2101227.	3.6	30
208	Highly efficient, solution-processed orange–red phosphorescent OLEDs by using new iridium phosphor with thieno[3,2-c]pyridine derivative as cyclometalating ligand. Organic Electronics, 2013, 14, 3392-3398.	1.4	29
209	Energy level-modulated non-fullerene small molecule acceptors for improved <i>V</i> _{OC} and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	5.2	29
210	Multiple Resonance Thermally Activated Delayed Fluorescence Sensitizers Enable Green-to-Ultraviolet Photon Upconversion: Application in Photochemical Transformations. CCS Chemistry, 2022, 4, 3852-3863.	4.6	29
211	Using Simple Fusedâ€Ring Thieno[2,3â€ <i>d</i>]pyrimidine to Construct Orange/Red Ir(III) Complexes: Highâ€Performance Red Organic Lightâ€Emitting Diodes with EQEs up to Nearly 28%. Advanced Optical Materials, 2018, 6, 1800108.	3.6	28
212	Highly efficient red thermally activated delayed fluorescence emitters by manipulating the molecular horizontal orientation. Materials Chemistry Frontiers, 2021, 5, 3209-3215.	3.2	28
213	Switching monomer/excimer ratiometric fluorescence to time-resolved excimer probe for DNA detection: A simple strategy to enhance the sensitivity. Sensors and Actuators B: Chemical, 2016, 224, 31-36.	4.0	27
214	High-Efficiency Solution-Processed Organic Light-Emitting Diodes with Tetradentate Platinum(II) Emitters. ACS Applied Materials & Interfaces, 2019, 11, 45161-45170.	4.0	27
215	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. Science China Materials, 2021, 64, 920-930.	3.5	27
216	Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazineâ€Fused Carbene Au(I) Emitters. Chemistry - A European Journal, 2021, 27, 17834-17842.	1.7	27

#	Article	IF	CITATIONS
217	Selfâ€Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for Highâ€Efficiency Allâ€Solutionâ€Processed Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2017, 27, 1700695.	7.8	26
218	Regulating the electron transporting properties of indacenodithiophene derivatives for perovskite solar cells with PCEs up to 19.51%. Journal of Materials Chemistry A, 2018, 6, 18044-18049.	5.2	26
219	Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells <i>via</i> methyl-functionalized non-fullerene acceptors. Journal of Materials Chemistry A, 2019, 7, 6809-6817.	5.2	26
220	Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. Chemical Communications, 2019, 55, 14190-14193.	2.2	26
221	Benzobisoxazole-based electron transporting materials with high T _g and ambipolar property: high efficiency deep-red phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 7589-7596.	2.7	25
222	Polymorphism-dependent thermally activated delayed fluorescence materials with diverse three dimensional supramolecular frameworks. Chemical Engineering Journal, 2020, 390, 124626.	6.6	25
223	Copper(I) Complex as Sensitizer Enables Highâ€Performance Organic Lightâ€Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Functional Materials, 2021, 31, 2106345.	7.8	25
224	Extending the π‧keleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie, 2022, 134, .	1.6	25
225	Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing PLED performance and structure–property relationships. Journal of Materials Chemistry, 2008, 18, 3366.	6.7	24
226	A Kinetically Stable Macrocycle Self-Assembled in Water. Organic Letters, 2018, 20, 2356-2359.	2.4	24
227	Designing dual emitting cores for highly efficient thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2018, 6, 11615-11621.	2.7	24
228	Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy. Journal of Materials Chemistry C, 2016, 4, 1482-1489.	2.7	23
229	Poly(N-vinylcarbazole) (PVK) as a high-potential organic polymer cathode for dual-intercalation Na-ion batteries. Organic Electronics, 2019, 75, 105386.	1.4	23
230	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. Dyes and Pigments, 2020, 176, 108179.	2.0	23
231	Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorganic Chemistry, 2020, 59, 12122-12131.	1.9	23
232	Manipulating the LUMO distribution of quinoxaline-containing architectures to design electron transport materials: Efficient blue phosphorescent organic light-emitting diodes. Organic Electronics, 2016, 37, 439-447.	1.4	22
233	Benzobisthiadiazole-alt-bithiazole copolymers with deep HOMO levels for good-performance field-effect transistors with air stability and a high on/off ratio. Polymer Chemistry, 2016, 7, 2808-2814.	1.9	22
234	Boosting photoluminescence quantum yields of triarylboron/phenoxazine hybrids <i>via</i> incorporation of cyano groups and their applications as TADF emitters for high-performance solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 4778-4783.	2.7	22

#	Article	IF	CITATIONS
235	Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene π-Bridge. Macromolecules, 2020, 53, 2893-2901.	2.2	22
236	A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Materials Chemistry Frontiers, 2021, 5, 3192-3200.	3.2	22
237	Copolyfluorenes containing bridged triphenylamine or triphenylamine: Synthesis, characterization, and optoelectronic properties. Journal of Polymer Science Part A, 2009, 47, 3651-3661.	2.5	21
238	In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries. ACS Applied Materials & Interfaces, 2019, 11, 32987-32993.	4.0	21
239	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS Applied Materials & Interfaces, 2020, 12, 13068-13076.	4.0	21
240	High-efficiency and low roll-off deep-blue OLEDs enabled by thermally activated delayed fluorescence emitter with preferred horizontal dipole orientation. Chemical Engineering Journal, 2022, 433, 133598.	6.6	21
241	Polycyclic phenazine-derived rigid donors construct thermally activated delayed fluorescence emitters for highly efficient orange OLEDs with extremely low roll-off. Chemical Engineering Journal, 2022, 438, 135571.	6.6	21
242	Diarylmethylene-bridged 4,4′-(bis(9-carbazolyl))biphenyl: morphological stable host material for highly efficient electrophosphorescence. Journal of Materials Chemistry, 2009, 19, 7661.	6.7	20
243	Adamantaneâ€Based Wideâ€Bandgap Host Material: Blue Electrophosphorescence with High Efficiency and Very High Brightness. Chemistry - A European Journal, 2015, 21, 8250-8256.	1.7	20
244	Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation. Organic Electronics, 2015, 26, 400-407.	1.4	20
245	Simple InCl ₃ Doped PEDOT:PSS and UV–Ozone Treatment Strategy: External Quantum Efficiency up to 21% for Solution-Processed Organic Light-Emitting Devices with a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Materials & Interfaces, 2017, 9, 34139-34145.	4.0	20
246	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	2.7	20
247	Green and yellow pyridazine-based phosphorescent Iridium(III) complexes for high-efficiency and low-cost organic light-emitting diodes. Dyes and Pigments, 2019, 164, 206-212.	2.0	20
248	Manipulating the doping level via host-dopant synergism towards high performance n-type thermoelectric composites. Chemical Engineering Journal, 2020, 382, 122817.	6.6	20
249	Designing versatile sulfoximine as accepting unit to regulate the photophysical properties of TADF emitters towards high-performance OLEDs. Chemical Engineering Journal, 2020, 399, 125648.	6.6	20
250	Dinuclear Zn ^{II} Complexes Exhibiting Thermally Activated Delayed Fluorescence and Luminescence Polymorphism. Chemistry - A European Journal, 2020, 26, 6887-6893.	1.7	20
251	Molecular engineering by σ-Bond spacer enables solution-processable host materials for TADF emitter towards high-performance OLEDs. Chemical Engineering Journal, 2020, 396, 125276.	6.6	20
252	Faceâ€ŧoâ€Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. Angewandte Chemie, 2021, 133, 4040-4044.	1.6	20

#	Article	IF	CITATIONS
253	Tuning of Förster Resonance Energy Transfer in Metal–Organic Frameworks: Toward Amplified Fluorescence Sensing. CCS Chemistry, 2021, 3, 2054-2062.	4.6	20
254	Manipulating Förster and Dexter interactions between a thermally activated delayed fluorescence host and a phosphorescent dopant for highly efficient solution-processed red and white OLEDs. Journal of Materials Chemistry C, 2022, 10, 4637-4645.	2.7	20
255	Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 13539-13549.	4.0	20
256	Isomerization of Asymmetric Ladderâ€Type Heteroheptaceneâ€Based Smallâ€Molecule Acceptors Improving Molecular Packing: Efficient Nonfullerene Organic Solar Cells with Excellent Fill Factors. Advanced Functional Materials, 2022, 32, .	7.8	20
257	Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off. Applied Physics Letters, 2012, 100, 063304.	1.5	19
258	Asymmetric thieno[2,3-b]thiophene-based electron acceptor featuring a seven fused-ring electron donor unit as core for nonfullerene organic photovoltaics. Organic Electronics, 2018, 62, 82-88.	1.4	19
259	Insight into the Efficiency and Stability of All-Polymer Solar Cells Based on Two 2D-Conjugated Polymer Donors: Achieving High Fill Factor of 78%. ACS Applied Materials & Interfaces, 2019, 11, 43433-43440.	4.0	19
260	Fused tetracyclic tris[1,2,4]triazolo[1,3,5]triazine as a novel rigid electron acceptor for efficient thermally activated delayed fluorescence emitters. RSC Advances, 2020, 10, 15523-15529.	1.7	19
261	Multi-resonance organoboron-based fluorescent probe for ultra-sensitive, selective and reversible detection of fluoride ions. Journal of Materials Chemistry C, 2021, 9, 1567-1571.	2.7	19
262	Three Types of Chargedâ€Ligandâ€Based Blue–Green to Nearâ€Infrared Emitting Iridium Complexes: Synthesis, Structures, and Organic Lightâ€Emitting Diode Application. Advanced Optical Materials, 2021, 9, 2002060.	3.6	19
263	Highly Efficient Solutionâ€Processable Organic Lightâ€Emitting Devices with Pincerâ€Type Cyclometalated Platinum(II) Arylacetylide Complexes. Chemistry - an Asian Journal, 2013, 8, 1754-1759.	1.7	18
264	Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices. Applied Physics Letters, 2013, 102, 013307.	1.5	18
265	Tuning emissive characteristics and singlet-triplet energy splitting of fluorescent emitters by encapsulation group modification: Yellow TADF emitter for solution-processed OLEDs with high luminance and ultraslow efficiency roll-off. Dyes and Pigments, 2017, 139, 593-600.	2.0	18
266	The end-capped group effect on dithienosilole trimer based small molecules for efficient organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 1972-1978.	2.7	17
267	Isomeric small molecule acceptors based on perylene diimide and spirobifluorene for non-fullerene organic solar cells. Dyes and Pigments, 2017, 146, 151-158.	2.0	17
268	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	3.2	17
269	A new small molecule acceptor based on indaceno[2,1-b:6,5-b']dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes and Pigments, 2018, 148, 263-269.	2.0	17
270	Revealing the new potential of an indandione unit for constructing efficient yellow thermally activated delayed fluorescence emitters with short emissive lifetimes. Journal of Materials Chemistry C, 2018, 6, 7111-7118.	2.7	17

#	Article	IF	CITATIONS
271	Chlorination Strategyâ€Induced Abnormal Nanomorphology Tuning in Highâ€Efficiency Organic Solar Cells: A Study of Phenylâ€Substituted Benzodithiopheneâ€Based Nonfullerene Acceptors. Solar Rrl, 2019, 3, 1900262.	3.1	17
272	Combining the qualities of carbazole and tetraphenyl silane in a desirable main chain for thermally activated delayed fluorescence polymers. Polymer Chemistry, 2019, 10, 4201-4208.	1.9	17
273	Fusedâ€Ring Core Engineering for Small Molecule Acceptors Enable Highâ€Performance Nonfullerene Polymer Solar Cells. Small Methods, 2019, 3, 1900280.	4.6	17
274	Fine-tuning the photophysical properties of thermally activated delayed fluorescent emitters using torsion angles: high performance sky-blue OLEDs. Journal of Materials Chemistry C, 2019, 7, 13953-13959.	2.7	17
275	Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Selfâ€Doped Cathode Interfacial Layers for Organic Photovoltaics. Advanced Functional Materials, 2019, 29, 1806125.	7.8	17
276	Photoswitchable Thermally Activated Delayed Fluorescence Nanoparticles for "Doubleâ€Check― Confocal and Timeâ€Resolved Luminescence Bioimaging. Advanced Optical Materials, 2022, 10, .	3.6	17
277	Modulating LUMO extension of Spiro-junction TADF emitters for efficient OLEDs with relieved efficiency Roll-Off. Chemical Engineering Journal, 2022, 437, 135222.	6.6	17
278	Zn2+-cyclen-based complex enable a selective detection of single-stranded thymine-rich DNA in aqueous buffer. Biosensors and Bioelectronics, 2016, 85, 792-797.	5.3	16
279	Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. Dyes and Pigments, 2018, 153, 92-98.	2.0	16
280	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. Journal of Materials Chemistry C, 2018, 6, 11111-11117.	2.7	16
281	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. Chemical Communications, 2019, 55, 15125-15128.	2.2	16
282	Pyrido[2,3- <i>b</i>]pyrazine-based full-color fluoresent materials for high-performance OLEDs. Journal of Materials Chemistry C, 2020, 8, 12445-12449.	2.7	16
283	The regioisomeric bromination effects of fused-ring electron acceptors: modulation of the optoelectronic property and miscibility endowing the polymer solar cells with 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 25101-25108.	5.2	16
284	Multicolor ultralong room-temperature phosphorescence from pure organic emitters by structural isomerism. Chemical Engineering Journal, 2021, 408, 127309.	6.6	16
285	Highly efficient blue TADF emitters incorporating bulky acridine moieties and their application in solution-processed OLEDs. Dyes and Pigments, 2021, 188, 109157.	2.0	16
286	3D Triptyceneâ€Fused Acridine Electron Donor Enables Highâ€Efficiency Nondoped Thermally Activated Delayed Fluorescent OLEDs. Advanced Optical Materials, 2021, 9, 2100273.	3.6	16
287	Triazatruxene based star-shaped thermally activated delayed fluorescence emitters: modulating the performance of solution-processed non-doped OLEDs <i>via</i> side-group engineering. Journal of Materials Chemistry C, 2021, 9, 7363-7373.	2.7	16
288	Hostâ€Dopant Interaction between Organic Thermally Activated Delayed Fluorescence Emitter and Host Material: Insight into the Excited State. Advanced Optical Materials, 2022, 10, 2101343.	3.6	16

#	Article	IF	CITATIONS
289	Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 17265-17286.	2.7	16
290	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie, 2022, 134, .	1.6	16
291	Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance. Polymer Chemistry, 2015, 6, 6050-6057.	1.9	15
292	Simple pyridine hydrochlorides as bifunctional electron injection and transport materials for high-performance all-solution-processed organic light emitting diodes. Journal of Materials Chemistry C, 2016, 4, 6224-6229.	2.7	15
293	Sulfur-annulated perylenediimide as an interfacial material enabling inverted perovskite solar cells with over 20% efficiency and high fill factors exceeding 83%. Journal of Materials Chemistry A, 2019, 7, 21176-21181.	5.2	15
294	Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. Nanoscale, 2020, 12, 4945-4952.	2.8	15
295	Triplet–triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. Materials Horizons, 2021, 8, 606-611.	6.4	15
296	On-off switchable thermally activated delayed fluorescence controlled by multiple channels: Understanding the mechanism behind distinctive polymorph-dependent optical properties. Chemical Engineering Journal, 2021, 415, 128909.	6.6	15
297	Efficient Triplet–Triplet Annihilation Upconversion in Solution and Hydrogel Enabled by an S-T Absorption Os(II) Complex Dyad with an Elongated Triplet Lifetime. Inorganic Chemistry, 2021, 60, 19001-19008.	1.9	15
298	Synthesis of β-Cyclodextrin-Functionalized (2S,4S)-(â~')-4-(Diphenylphosphino)-2-(diphenylphosphinomethyl)pyrrolidine Ligands and Their Rhodium and Platinum Complexes. Organometallics, 2001, 20, 5220-5224.	1.1	14
299	Two Wellâ€Compatible Acceptors with Efficient Energy Transfer Enable Ternary Organic Photovoltaics Exhibiting a 13.36% Efficiency. Small, 2019, 15, e1902602.	5.2	14
300	Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. Journal of Materials Chemistry A, 2019, 7, 2412-2420.	5.2	14
301	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
302	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	6.9	14
303	De novo design of polymers embedded with platinum acetylides towards n-type organic thermoelectrics. Chemical Engineering Journal, 2021, 405, 126692.	6.6	14
304	Molecular engineering by σ-linkers enables delayed fluorescence emitters for high-efficiency sky-blue solution-processed OLEDs. Chemical Engineering Journal, 2022, 430, 133078.	6.6	14
305	<i>De novo</i> design of small molecule acceptors <i>via</i> fullerene/non-fullerene hybrids for polymer solar cells. Chemical Communications, 2018, 54, 9801-9804.	2.2	13
306	Double-twist pyridine–carbonitrile derivatives yielding excellent thermally activated delayed fluorescence emitters for high-performance OLEDs. Journal of Materials Chemistry C, 2020, 8, 602-606.	2.7	13

#	Article	IF	CITATIONS
307	Highly emissive phosphorescence nanoparticles sensitized by a TADF polymer for time-resolved luminescence imaging. Materials Chemistry Frontiers, 2020, 4, 2389-2397.	3.2	13
308	Unravelling Electroplex Emission from Long-Range Charge Transfer Based on a Phosphorescent Dendrimer as the Electron Donor. Journal of Physical Chemistry Letters, 2020, 11, 5255-5262.	2.1	13
309	Star-shaped thermally activated delayed fluorescence emitters with a tri-armed arylsulfonic acceptor for efficient solution processed organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5580-5586.	2.7	13
310	Over 16% Efficiency of Thickâ€Film Organic Photovoltaics with Symmetric and Asymmetric Nonâ€Fullerene Materials as Alloyed Acceptor. Solar Rrl, 2021, 5, 2100365.	3.1	13
311	Efficient electron injection layer based on thermo-cleavable materials for inverted bottom-emission polymer light emitting diodes. Journal of Materials Chemistry, 2012, 22, 6413.	6.7	12
312	Highâ€Efficiency White Organic Lightâ€Emitting Diodes Based on All Nondoped Thermally Activated Delayed Fluorescence Emitters. Advanced Materials Interfaces, 2020, 7, 1901758.	1.9	12
313	A Plastic Scintillator Based on an Efficient Thermally Activated Delayed Fluorescence Emitter 9â€(4â€(4,6â€diphenylâ€1,3,5â€triazinâ€2â€yl)â€2â€methylphenyl)â€3,6â€dioctylâ€9 H â€carbazole for Pulse Measurement. Advanced Optical Materials, 2021, 9, 2001975.	e Shape Di	scrim2ination
314	Realize efficient organic afterglow from simple halogenated acridan derivatives. Chemical Engineering Journal, 2021, 419, 129598.	6.6	12
315	Aggregation-induced delayed fluorescence for time-resolved luminescence sensing of carboxylesterase in living cells. Chemical Engineering Journal, 2022, 437, 135396.	6.6	12
316	Designing High-Performance Nonfused Ring Electron Acceptors <i>via</i> Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS Applied Materials & Interfaces, 2022, 14, 21287-21294.	4.0	12
317	Starâ€Shaped Macromolecules with the Core of Hexakisâ€(fluorenâ€2â€yl)benzene and the Periphery of Pyridine: Synthesis and Application as Solutionâ€Processable Electronâ€Transport Materials. Macromolecular Rapid Communications, 2015, 36, 1658-1663.	2.0	11
318	Tetraphenylethene-based Zn complexes for the highly sensitive detection of single-stranded DNA. Journal of Materials Chemistry C, 2015, 3, 11902-11906.	2.7	11
319	Narrow band-gap copolymers with two acceptors of benzo[1,2-c;3,4-c′]bis[1,2,5]thiadiazole and Benzo[c][1,2,5] thiadiazole: Synthesis, characteristics and application in field-effect transistors. Dyes and Pigments, 2016, 130, 291-297.	2.0	11
320	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 709-715.	3.2	11
321	Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. Journal of Materials Chemistry C, 2019, 7, 13218-13223.	2.7	11
322	Transfer printing of polymer light-emitting devices with a small molecular seeding layer featuring thermally activated delayed fluorescence for triplet harvesting. Nanoscale Horizons, 2020, 5, 144-149.	4.1	11
323	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	2.2	11
324	Modulating the Electronâ€Donating Ability of Acridine Donor Units for Orange–Red Thermally Activated Delayed Fluorescence Emitters. Chemistry - A European Journal, 2021, 27, 3151-3158.	1.7	11

#	Article	IF	CITATIONS
325	Highly efficient thermally activated delayed fluorescence emitters enabled by double charge transfer pathways <i>via ortho</i> -linked triarylboron/carbazole hybrids. Journal of Materials Chemistry C, 2021, 9, 1678-1684.	2.7	11
326	Three types of charged ligand-based neutral phosphorescent iridium(<scp>iii</scp>) complexes featuring <i>nido</i> -carborane: synthesis, structures, and solution processed organic light-emitting diode applications. Dalton Transactions, 2021, 50, 16304-16310.	1.6	11
327	Long excited state lifetime of thermally activated delayed fluorescent photosensitizer integrated into Metal-organic framework enables efficient CO2 photoreduction. Chemical Engineering Journal, 2022, 431, 133897.	6.6	11
328	Saturated red iridium(<scp>iii</scp>) complexes containing a unique four-membered Ir–S–C–N backbone: mild synthesis and application in OLEDs. Journal of Materials Chemistry C, 2020, 8, 1391-1397.	2.7	10
329	Extending Photoresponse to the Nearâ€Infrared Region for Inverted Perovskite Solar Cells by Using a Lowâ€Bandgap Electron Transporting Material. Solar Rrl, 2020, 4, 1900565.	3.1	10
330	Saccharin-derived multifunctional emitters featuring concurrently room temperature phosphorescence, thermally activated delayed fluorescence and aggregation-induced enhanced emission. Chemical Engineering Journal, 2021, 419, 129628.	6.6	10
331	Sky-blue thermally activated delayed fluorescence polymers by using a conjugation-confined poly(aryl) Tj ETQq1 1	0.784314	l rgBT /Ονe
332	Side by Side Alignment of Donors Enabling High‣fficiency TADF OLEDs with Insensitivity to Doping Concentration. Advanced Optical Materials, 2021, 9, 2101410.	3.6	10
333	Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs. Dyes and Pigments, 2022, 197, 109860.	2.0	10
334	Three Types of Charged Ligands Based Carboxyl-Containing Iridium(III) Complexes: Structures, Photophysics, and Solution Processed OLED Application. Inorganic Chemistry, 2021, 60, 17699-17704.	1.9	10
335	Efficient blue thermally activated delayed fluorescent emitters based on a boranaphtho[3,2,1-de]anthracene acceptor. Journal of Materials Chemistry C, 2021, 9, 17136-17142.	2.7	10
336	Red and near-infrared emissive palladium(II) complexes with tetradentate coordination framework and their application in OLEDs. Chemical Engineering Journal, 2022, 446, 136834.	6.6	10
337	High-Performance Non-fullerene organic solar cells enabled by noncovalent Conformational locks and Side-Chain engineering. Chemical Engineering Journal, 2022, 446, 137206.	6.6	10
338	Deep-Red/Near-Infrared to Blue-Green Phosphorescent Iridium(III) Complexes Featuring Three Differently Charged (0, â^'1, and â^'2) Ligands: Structures, Photophysics, and Organic Light-Emitting Diode Application. Inorganic Chemistry, 2022, 61, 10548-10556.	1.9	10
339	Triazine-core-containing star-shaped compounds as cathode interlayers for efficient inverted polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 11278-11283.	2.7	9
340	A Cu-NHC based phosphorescent binuclear iridium(iii)/copper(i) complex with an unpredictable near-linear two-coordination mode. Dalton Transactions, 2018, 47, 17299-17303.	1.6	9
341	Thieno[3,2â€ <i>b</i>]thiopheneâ€Bridged Conjugated Polymers Based on Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]silole and Thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione for Polymer S Influence of Side Chains on Optoelectronic Properties. Macromolecular Chemistry and Physics, 2018, 219, 1800297.	olar Cells:	9
342	New-structure perylene diimide oligomers by the linkage of the bay- and imide-position for nonfullerene solar cells. Dyes and Pigments, 2019, 163, 356-362.	2.0	9

#	Article	IF	CITATIONS
343	Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polymer Chemistry, 2020, 11, 3481-3487.	1.9	9
344	Purine-based thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes. Dyes and Pigments, 2020, 180, 108437.	2.0	9
345	Color-tunable tetracoordinated organoboron complexes exhibiting aggregation-induced emission for the efficient turn-on detection of fluoride ions. Materials Chemistry Frontiers, 2021, 5, 2353-2360.	3.2	9
346	Ternary organic solar cells with PCEs of up to 16.6% by two complementary acceptors working in alloy-like model. Organic Electronics, 2021, 91, 106085.	1.4	9
347	Difluoroboron locking tactic enhances photo- and electroluminescence of TADF emitter. Dyes and Pigments, 2021, 192, 109392.	2.0	9
348	Solution-processed multiple exciplexes via spirofluorene and S-triazine moieties for red thermally activated delayed fluorescence emissive layer OLEDs. Organic Electronics, 2021, 96, 106184.	1.4	9
349	Tetracoordinate Boronâ€Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 0, , .	1.6	9
350	A dual rigid donor and acceptor enabling red thermally activated delayed fluorescence emitters for efficient OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 10255-10261.	2.7	9
351	An inorganic–organic intercalated nanocomposite, BEDT-TTF into layered MnPS3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 293-296.	1.6	8
352	Efficient Yellow Thermally Activated Delayed Fluorescent Emitters Based on 3,5-Dicyanopyridine Acceptors. Journal of Physical Chemistry C, 2020, 124, 25489-25498.	1.5	8
353	Synthesis of Spirobifluoreneâ€ <i>alt</i> arbazole Copolymers with Oxadiazole Pendants and their Thermal, Electrochemical, and Photoluminescent Properties. Macromolecular Rapid Communications, 2008, 29, 1817-1822.	2.0	7
354	Organic Lightâ€Emitting Diodes: Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870033.	11.1	7
355	Effects of Different Unsaturatedâ€Linkerâ€Containing Donors on Electronic Properties of Benzobisthiadiazoleâ€Based Copolymers. Macromolecular Chemistry and Physics, 2018, 219, 1700474.	1.1	7
356	Monoradically luminescent polymers by a super acid-catalyzed polymerization and deep-red electroluminescence. Science China Chemistry, 2020, 63, 1214-1220.	4.2	7
357	Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells. Organic Electronics, 2020, 85, 105880.	1.4	7
358	Highly efficient blue electroluminescence based on TADF emitters with spiroacridine donors: methyl group effect on photophysical properties. Journal of Materials Chemistry C, 2022, 10, 4614-4619.	2.7	7
359	A New Organic-Inorganic Hybrid Nanocomposite, BEDT-TTF Intercalated into Layered FePS3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 53, 205-209.	1.6	6
360	Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells. Scientific Reports, 2015, 5, 17329.	1.6	6

#	Article	IF	CITATIONS
361	A novel 9 <i>H</i> -indeno[1,2- <i>b</i>]pyrazine-2,3-dicarbonitrile end group for an efficient non-fullerene small molecule acceptor. Journal of Materials Chemistry C, 2019, 7, 10111-10118.	2.7	6
362	Photooxidation Analysis of Two Isomeric Nonfullerene Acceptors: A Systematic Study of Conformational, Morphological, and Environmental Factors. Solar Rrl, 2021, 5, 2000704.	3.1	6
363	Naphthalene-fused octacyclic electron-donating central core constructs non-fullerene acceptors for organic solar cells. Chemical Engineering Journal, 2021, 425, 130618.	6.6	6
364	Confining electron donor and acceptor in space to realize high efficiency charge-transfer luminescence. Science China Chemistry, 2021, 64, 165-166.	4.2	6
365	Nematic liquid crystals induce and amplify the circularly polarized luminescence of chiral TADF emitters. Journal of Materials Chemistry C, 2022, 10, 5065-5069.	2.7	6
366	Electron Paramagnetic Resonance Study of Magnetic Ordering in MnPS3, Mn0.79PS3(4,4′-bipy)0.42 and Mn0.84PS3(1,10-Phen)0.64 Compounds. Molecular Crystals and Liquid Crystals, 2000, 341, 119-124.	0.3	5
367	Waterâ€soluble fluoreneâ€based copolymers incorporated methoxyphenol moieties: Novel polymeric chemodosimeters for hypochlorous acid. Journal of Polymer Science Part A, 2012, 50, 1174-1180.	2.5	5
368	Sky-blue thermally activated delayed fluorescence polymers with π-interrupted polymer mainchain via Friedel-Crafts polycondensation. Polymer, 2020, 204, 122722.	1.8	5
369	Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter. Journal of Materials Chemistry C, 2020, 8, 10831-10836.	2.7	5
370	Unfused Electronic Acceptor-Based Polymers as Interfacial Materials for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33328-33334.	4.0	5
371	Deep-red thermally activated delayed fluorescence emitters based on a phenanthroline-containing planar acceptor. Dyes and Pigments, 2021, 192, 109474.	2.0	5
372	Iridium(III) Complexes with [â^'2, â^'1, 0] Charged Ligand Realized Deepâ€Red/Nearâ€Infrared Phosphorescent Emission. Chemistry - A European Journal, 2022, 28, .	1.7	5
373	Metal–Organic Framework Based Thermally Activated Delayed Fluorescence Emitter with Oxygenâ€Insensitivity for Cell Imaging. Advanced Optical Materials, 2022, 10, .	3.6	5
374	Acceptor-Donor-Acceptor <i>Ï€</i> -Stacking Boosts Intramolecular Through-Space Charge Transfer towards Efficient Red TADF and High-Performance OLEDs. Research, 2022, 2022, .	2.8	5
375	Boosting the electroluminescence efficiency of solution-processed thermally activated delayed fluorescence OLEDs with a versatile hole-transporting layer of organic–inorganic hybrid perovskite. Journal of Materials Chemistry C, 2018, 6, 6305-6311.	2.7	4
376	Systematic investigation of methyl substitution effect on physicochemical properties and photovoltaic performance in nonfullerene small-molecule electron acceptors. Dyes and Pigments, 2019, 164, 126-132.	2.0	4
377	Thermally activated delayed fluorescent polymer- assisted morphological control on perfluorinated ionomer enriched surface and exciton harvesting for phosphorescent organic light-emitting devices. Dyes and Pigments, 2020, 183, 108718.	2.0	4
378	A simple strategy to achieve efficient thermally activated delayed fluorescent emitters via enhancing electron donating ability of donors. Dyes and Pigments, 2020, 180, 108521.	2.0	4

#	Article	IF	CITATIONS
379	Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. Journal of Materials Chemistry C, 2021, 9, 12633-12641.	2.7	4
380	Versatile Direct Cyclization Constructs Spiroâ€acridan Derivatives for Highly Efficient TADF emitters. Angewandte Chemie, 2021, 133, 12484-12488.	1.6	4
381	Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules, 2021, 26, 5243.	1.7	4
382	The cis- and trans-orientation of benzo[1,2-b:4,5-b′]dithiophene-based isomers in organic solar cells. Materials Chemistry Frontiers, 2021, 5, 1486-1494.	3.2	4
383	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 42, 71-75.	1.6	3
384	Synthesis and characterization of intercalation compounds of stilbazolium chromophores into layered vanadyl phosphate. Journal of Materials Chemistry, 2005, 15, 1637.	6.7	3
385	The intercalation of transition metal salen complexes into layered MoS2. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 59, 217-222.	1.6	3
386	Regulating the optoelectronic properties of small molecule donors with multiple alternative electron-donor and acceptor units for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 8101-8108.	5.2	3
387	Benzo[c][1,2,5]thiadiazole-fused pentacyclic small molecule acceptors for organic solar cells. Dyes and Pigments, 2021, 185, 108970.	2.0	3
388	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes and Pigments, 2021, 188, 109192.	2.0	3
389	High-efficiency organic light emitting diodes using high-index transparent electrode. Organic Electronics, 2020, 87, 105984.	1.4	2
390	Rigid Bridgeâ€Confined Doubleâ€Đecker Platinum(II) Complexes Towards High Performance Red and Nearâ€Infrared Electroluminescence. Angewandte Chemie, 2022, 134, e202113718.	1.6	2
391	å«å∮啶基团çš"åŒæžä"»ä¼2"ææ–™çš"啿^ã€æ€§èƒ¼zä,Žè"å‰ç"µè‡′磷å‰å™¨ä»¶ç"ç©¶. Scientia Sinica	a Chinnica	, 2013, 43, 4
392	Electron Magnetic Resonance Studies of the Intercalation Ferromagnet 2,2′-bipyridine-MnPS ₃ Above and Below Curie Temperature. Molecular Crystals and Liquid Crystals, 2000, 348, 295-300.	0.3	0
393	Lightâ€Emitting Diodes: Selfâ€Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for Highâ€Efficiency Allâ€Solutionâ€Processed Polymer Lightâ€Emitting Diodes (Adv. Funct. Mater. 26/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
394	28â€1: <i>Invited Paper:</i> Efficient Thermally Activated Delayed Fluorescence Emitters with Preferentially Horizontal Dipole Orientations. Digest of Technical Papers SID International Symposium, 2021, 52, 349-350.	0.1	0
395	Orange, red, and near-infrared thermally activated delayed fluorescent emitters. , 2022, , 193-234.		0
396	Tuning the structures of polypyridinium salts as bifunctional cathode interfacial layers for all-solution-processed red quantum-dot light-emitting diodes. Chinese Chemical Letters, 2023, 34, 107411.	4.8	0

#	Article	IF	CITATIONS
397	Aggregation-induced emission luminogens for organic light-emitting diodes. , 2022, , 315-372.		0
398	Exciton Management of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Devices. , 2022, , 79-142.		0