
Robert J C Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077269/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins. Methods in Enzymology, 2021, 649, 71-102.	0.4	7
2	Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling. Nature Communications, 2021, 12, 7171.	5.8	16
3	Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity. Science Advances, 2020, 6, eaax8286.	4.7	66
4	The histone H3K4 demethylase JARID1A directly interacts with haematopoietic transcription factor GATA1 in erythroid cells through its second PHD domain. Royal Society Open Science, 2020, 7, 191048.	1.1	3
5	Structures of monomeric and oligomeric forms of the <i>Toxoplasma gondii</i> perforin-like protein 1. Science Advances, 2018, 4, eaaq0762.	4.7	32
6	Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain. Biochemical Journal, 2017, 474, 539-556.	1.7	40
7	Structural Transitions of the Conserved and Metastable Hantaviral Glycoprotein Envelope. Journal of Virology, 2017, 91, .	1.5	38
8	Membrane pores: from structure and assembly, to medicine and technology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160208.	1.8	12
9	Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160212.	1.8	26
10	Structural Basis for Plexin Activation and Regulation. Neuron, 2016, 91, 548-560.	3.8	89
11	Structure of astrotactin-2: a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Open Biology, 2016, 6, 160053.	1.5	28
12	Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly. Nature Communications, 2016, 7, 11598.	5.8	71
13	The communication, development, and promotion of biophysical science in a European and international context. European Biophysics Journal, 2016, 45, 1-2.	1.2	0
14	Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nature Immunology, 2016, 17, 574-582.	7.0	253
15	Measuring kinetic drivers of pneumolysin pore structure. European Biophysics Journal, 2016, 45, 365-376.	1.2	26
16	Protein–lipid interactions and non-lamellar lipidic structures in membrane pore formation and membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 487-499.	1.4	53
17	Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins. PLoS ONE, 2015, 10, e0120751.	1.1	105
18	Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes. Journal of Cell Biology, 2015, 208, 581-596.	2.3	44

ROBERT J C GILBERT

#	Article	IF	CITATIONS
19	Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1). Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 346-353.	0.4	2
20	An optimized protocol for expression and purification of murine perforin in insect cells. Journal of Immunological Methods, 2015, 426, 19-28.	0.6	4
21	Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity. Nucleic Acids Research, 2015, 43, 2968-2979.	6.5	25
22	Perforins. Springer Series in Biophysics, 2015, , 289-312.	0.4	2
23	Incomplete pneumolysin oligomers form membrane pores. Open Biology, 2014, 4, 140044.	1.5	81
24	Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1. Molecular Cell, 2014, 53, 645-654.	4.5	99
25	Membrane pore formation at protein–lipid interfaces. Trends in Biochemical Sciences, 2014, 39, 510-516.	3.7	140
26	Efficient Production and Purification of Recombinant Murine Kindlin-3 from Insect Cells for Biophysical Studies. Journal of Visualized Experiments, 2014, , .	0.2	2
27	Distribution of MACPF/CDC Proteins. Sub-Cellular Biochemistry, 2014, 80, 7-30.	1.0	38
28	Structural Features of Cholesterol Dependent Cytolysins and Comparison to Other MACPF-Domain Containing Proteins. Sub-Cellular Biochemistry, 2014, 80, 47-62.	1.0	10
29	Effects of MACPF/CDC proteins on lipid membranes. Cellular and Molecular Life Sciences, 2013, 70, 2083-2098.	2.4	71
30	The Long and Short of MicroRNA. Cell, 2013, 153, 516-519.	13.5	639
31	Structure of the Repulsive Guidance Molecule (RGM)–Neogenin Signaling Hub. Science, 2013, 341, 77-80.	6.0	52
32	Structural insights into proteoglycan-shaped Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16420-16425.	3.3	79
33	Biophysical Analysis of Kindlin-3 Reveals an Elongated Conformation and Maps Integrin Binding to the Membrane-distal β-Subunit NPXY Motif. Journal of Biological Chemistry, 2012, 287, 37715-37731.	1.6	33
34	Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase. Nature Structural and Molecular Biology, 2012, 19, 782-787.	3.6	47
35	Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain. Journal of Biological Chemistry, 2012, 287, 43246-43261.	1.6	27
36	Structures of Lysenin Reveal a Shared Evolutionary Origin for Pore-Forming Proteins And Its Mode of Sphingomyelin Recognition. Structure, 2012, 20, 1498-1507.	1.6	90

Robert J C Gilbert

#	Article	IF	CITATIONS
37	pH dependence of listeriolysin O aggregation and poreâ€forming ability. FEBS Journal, 2012, 279, 126-141.	2.2	86
38	Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 785-789.	0.7	17
39	Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering. Journal of Biological Chemistry, 2011, 286, 6685-6696.	1.6	39
40	Human Perforin Employs Different Avenues to Damage Membranes. Journal of Biological Chemistry, 2011, 286, 2946-2955.	1.6	82
41	Perforin activity at membranes leads to invaginations and vesicle formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21016-21021.	3.3	35
42	Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop. PLoS ONE, 2011, 6, e24286.	1.1	45
43	Cholesterol-Dependent Cytolysins. Advances in Experimental Medicine and Biology, 2010, 677, 56-66.	0.8	81
44	Direct Observation of Distinct A/P Hybrid-State tRNAs in Translocating Ribosomes. Structure, 2010, 18, 257-264.	1.6	12
45	Domain Metastability: A Molecular Basis for Immunoglobulin Deposition?. Journal of Molecular Biology, 2010, 399, 207-213.	2.0	18
46	The Mechanics of Translocation: A Molecular "Spring-and-Ratchet―System. Structure, 2008, 16, 664-672.	1.6	20
47	Oligomerisation of pneumolysin on cholesterol crystals: Similarities to the behaviour of polyene antibiotics. Toxicon, 2008, 51, 1554-1559.	0.8	5
48	RNA pseudoknots and the regulation of protein synthesis. Biochemical Society Transactions, 2008, 36, 684-689.	1.6	55
49	Ribosomal acrobatics in post-transcriptional control. Biochemical Society Transactions, 2008, 36, 677-683.	1.6	Ο
50	Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5788-5793.	3.3	21
51	A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 2006, 441, 244-247.	13.7	267
52	Crystal structure of a soluble CD28-Fab complex. Nature Immunology, 2005, 6, 271-279.	7.0	153
53	Inactivation and Activity of Cholesterol-Dependent Cytolysins: What Structural Studies Tell Us. Structure, 2005, 13, 1097-1106.	1.6	74
54	Hepatitis B small surface antigen particles are octahedral. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14783-14788.	3.3	90

Robert J C Gilbert

#	Article	IF	CITATIONS
55	Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin. Cell, 2005, 121, 247-256.	13.5	369
56	Three-Dimensional Structures of Translating Ribosomes by Cryo-EM. Molecular Cell, 2004, 14, 57-66.	4.5	104
57	The Role of Cholesterol in the Activity of Pneumolysin, a Bacterial Protein Toxin. Biophysical Journal, 2004, 86, 3141-3151.	0.2	51
58	Hybrid Vigor: Hybrid Methods In Viral Structure Determination. Advances in Protein Chemistry, 2003, 64, 37-91.	4.4	6
59	The Interaction Properties of Costimulatory Molecules Revisited. Immunity, 2002, 17, 201-210.	6.6	587
60	Editorial: Perforins and Cholesterol-Dependent Cytolysins in Immunity and Pathogenesis. Frontiers in Immunology, 0, 13, .	2.2	0