Johan Six

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077192/publications.pdf

Version: 2024-02-01

1505 1704 53,484 390 104 219 citations h-index g-index papers 443 443 443 28697 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241, 155-176.	3.7	3,176
2	A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79, 7-31.	5.6	2,884
3	Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32, 2099-2103.	8.8	2,360
4	Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 2006, 70, 555-569.	2.2	1,541
5	Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils. Soil Science Society of America Journal, 1998, 62, 1367-1377.	2.2	1,312
6	Soil Structure and Organic Matter I. Distribution of Aggregateâ€Size Classes and Aggregateâ€Associated Carbon. Soil Science Society of America Journal, 2000, 64, 681-689.	2.2	1,168
7	Aggregate and Soil Organic Matter Dynamics under Conventional and Noâ€√illage Systems. Soil Science Society of America Journal, 1999, 63, 1350-1358.	2.2	1,102
8	Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517, 365-368.	27.8	1,005
9	Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomy for Sustainable Development, 2002, 22, 755-775.	0.8	980
10	The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science, 2007, 318, 626-629.	12.6	802
11	Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Advances in Agronomy, 2005, , 85-156.	5.2	794
12	The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 2004, 10, 155-160.	9.5	658
13	Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 2000, 48, 147-163.	3.5	643
14	Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 2007, 86, 19-31.	3.5	623
15	The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 2013, 3, 395-398.	18.8	604
16	Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12, 989-994.	12.9	588
17	Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68, A4-A9.	8.8	565
18	The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Science Society of America Journal, 2005, 69, 1078-1085.	2.2	564

#	Article	IF	CITATIONS
19	Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry, 2001, 33, 1599-1611.	8.8	560
20	When does no-till yield more? A global meta-analysis. Field Crops Research, 2015, 183, 156-168.	5.1	538
21	Soil biodiversity and human health. Nature, 2015, 528, 69-76.	27.8	532
22	Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnology and Oceanography, 2010, 55, 1467-1477.	3.1	527
23	Measuring and Understanding Carbon Storage in Afforested Soils by Physical Fractionation. Soil Science Society of America Journal, 2002, 66, 1981-1987.	2.2	510
24	Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 2015, 8, 780-783.	12.9	509
25	Interactions between plant growth and soil nutrient cycling under elevated CO2 : a meta-analysis. Global Change Biology, 2006, 12, 2077-2091.	9.5	504
26	The interdisciplinary nature of & amp; lt; i& amp; gt; SOIL & amp; lt; /i& amp; gt; . Soil, 2015, 1, 117-129.	4.9	494
27	Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 2011, 115, 1301-1316.	11.0	488
28	Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 2015, 21, 3200-3209.	9.5	456
29	Food system resilience: Defining the concept. Global Food Security, 2015, 6, 17-23.	8.1	456
30	Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management. Soil Science Society of America Journal, 2012, 76, 494-504.	2.2	436
31	Soil Structure and Soil Organic Matter II. A Normalized Stability Index and the Effect of Mineralogy. Soil Science Society of America Journal, 2000, 64, 1042-1049.	2.2	406
32	Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 2001, 16, 195-208.	4.3	382
33	Climate, duration, and N placement determine N ₂ O emissions in reduced tillage systems: a metaâ€analysis. Global Change Biology, 2013, 19, 33-44.	9.5	347
34	Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change, 2013, 3, 187-194.	18.8	342
35	Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 2008, 14, 868-877.	9.5	335
36	Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks. Journal of Agricultural and Food Chemistry, 2013, 61, 2196-2204.	5.2	333

#	Article	lF	Citations
37	Bacterial and Fungal Cellâ€Wall Residues in Conventional and Noâ€Tillage Agroecosystems. Soil Science Society of America Journal, 1999, 63, 1188-1198.	2.2	318
38	Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6571-6574.	7.1	318
39	Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 2009, 134, 251-256.	5.3	318
40	Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 2007, 94, 328-337.	5.6	312
41	Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 2005, 37, 251-258.	8.8	310
42	Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 2011, 339, 35-50.	3.7	309
43	Soil organic carbon pool changes following landâ€use conversions. Global Change Biology, 2004, 10, 1120-1132.	9.5	305
44	Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21, 1715-1726.	9.5	286
45	Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 2003, 9, 1204-1213.	9.5	283
46	Soil Carbon Saturation Controls Labile and Stable Carbon Pool Dynamics. Soil Science Society of America Journal, 2008, 72, 605-612.	2.2	278
47	Sources and composition of soil organic matter fractions between and within soil aggregates. European Journal of Soil Science, 2001, 52, 607-618.	3.9	277
48	Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry, 2018, 125, 10-26.	8.8	269
49	Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 2007, 80, 25-41.	3.6	267
50	Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry–wet cycles. Soil Biology and Biochemistry, 2001, 33, 2145-2153.	8.8	260
51	Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. Journal of Geophysical Research, 2009, 114, .	3.3	252
52	Soil Carbon Saturation: Linking Concept and Measurable Carbon Pools. Soil Science Society of America Journal, 2008, 72, 379-392.	2.2	244
53	Carbon Sequestration in Microaggregates of Noâ€īillage Soils with Different Clay Mineralogy. Soil Science Society of America Journal, 2004, 68, 1935-1944.	2.2	243
54	Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 2010, 42, 2182-2191.	8.8	240

#	Article	IF	CITATIONS
55	Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Science Society of America Journal, 2006, 70, 287-296.	2.2	234
56	Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biology and Biochemistry, 2003, 35, 1001-1004.	8.8	230
57	Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biology and Biochemistry, 2006, 38, 837-844.	8.8	215
58	Aligning agriculture and climate policy. Nature Climate Change, 2017, 7, 307-309.	18.8	213
59	Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 2011, 342, 1-30.	3.7	210
60	Arbuscular Mycorrhizas, Microbial Communities, Nutrient Availability, and Soil Aggregates in Organic Tomato Production. Plant and Soil, 2006, 282, 209-225.	3.7	205
61	Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology, 2005, 29, 1-15.	4. 3	196
62	Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology and Biochemistry, 2007, 39, 1165-1172.	8.8	196
63	Title is missing!. Plant and Soil, 2002, 246, 185-200.	3.7	195
64	Soil Biodiversity and the Environment. Annual Review of Environment and Resources, 2015, 40, 63-90.	13.4	194
64	Soil Biodiversity and the Environment. Annual Review of Environment and Resources, 2015, 40, 63-90. EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391.	3.2	194
	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL		
65	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391. Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and	3.2	191
65	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391. Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and Resources, 2011, 36, 193-222. Clay mineralogy determines the importance of biological versus abiotic processes for	3.2	191 191
65 66 67	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391. Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and Resources, 2011, 36, 193-222. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science, 2005, 56, 469-479. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and	3.2 13.4 3.9	191 191 189
65 66 67 68	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391. Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and Resources, 2011, 36, 193-222. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science, 2005, 56, 469-479. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biology and Biochemistry, 2005, 37, 55-66. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C	3.2 13.4 3.9 8.8	191 191 189 188
65 66 67 68	EXPERIMENTAL WARMING SHOWS THAT DECOMPOSITION TEMPERATURE SENSITIVITY INCREASES WITH SOIL ORGANIC MATTER RECALCITRANCE. Ecology, 2008, 89, 2384-2391. Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and Resources, 2011, 36, 193-222. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science, 2005, 56, 469-479. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biology and Biochemistry, 2005, 37, 55-66. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global Change Biology, 2012, 18, 2218-2232. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and	3.2 13.4 3.9 8.8	191 191 189 188

#	Article	IF	Citations
73	Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry, 2013, 112, 81-93.	3.5	179
74	Tracing Root vs. Residue Carbon into Soils from Conventional and Alternative Cropping Systems. Soil Science Society of America Journal, 2010, 74, 1201-1210.	2.2	174
75	Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 2017, 303, 110-117.	5.1	168
76	Coordinated approaches to quantify longâ€ŧerm ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	9.5	165
77	Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 2008, 40, 1741-1750.	8.8	161
78	The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biology and Biochemistry, 2011, 43, 905-914.	8.8	160
79	Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry, 2008, 40, 2375-2384.	8.8	156
80	Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry, 2011, 43, 20-30.	8.8	156
81	Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 2011, 43, 657-666.	8.8	153
82	Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry, 2009, 41, 357-366.	8.8	152
83	Object-Based Image Classification of Summer Crops with Machine Learning Methods. Remote Sensing, 2014, 6, 5019-5041.	4.0	152
84	Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil and Tillage Research, 2015, 150, 107-113.	5.6	149
85	Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 2017, 7, 345-349.	18.8	149
86	Aggregateâ€Protected Carbon in Noâ€tillage and Conventional Tillage Agroecosystems Using Carbonâ€14 Labeled Plant Residue. Soil Science Society of America Journal, 2002, 66, 1965-1973.	2.2	142
87	Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability, 2018, 1, 234-239.	23.7	140
88	Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils. Microbial Ecology, 2006, 51, 404-411.	2.8	138
89	Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil and Tillage Research, 2007, 95, 196-206.	5.6	137
90	Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. Journal of Geophysical Research, 2010, 115, .	3.3	137

#	Article	IF	Citations
91	Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biology and Fertility of Soils, 2003, 38, 386-392.	4.3	133
92	Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems and Environment, 2013, 177, 10-20.	5.3	133
93	Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19492-19497.	7.1	126
94	Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems and Environment, 2013, 170, 16-27.	5.3	126
95	Soil fauna and soil function in the fabric of the food web. Pedobiologia, 2007, 50, 447-462.	1.2	125
96	Preferential Accumulation of Microbial Carbon in Aggregate Structures of Noâ€Tillage Soils. Soil Science Society of America Journal, 2004, 68, 1249-1255.	2.2	124
97	Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 2009, 41, 2249-2256.	8.8	124
98	Indications for Soil Carbon Saturation in a Temperate Agroecosystem. Soil Science Society of America Journal, 2008, 72, 1132-1139.	2.2	123
99	Comparing the sustainability of local and global food products in Europe. Journal of Cleaner Production, 2017, 165, 346-359.	9.3	118
100	Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 2018, 11, 589-593.	12.9	116
101	Aggregation and C and N contents of soil organic matter fractions in a permanent raised-bed planting system in the Highlands of Central Mexico. Plant and Soil, 2008, 305, 237-252.	3.7	115
102	Pore structure changes during decomposition of fresh residue: X-ray tomography analyses. Geoderma, 2006, 134, 82-96.	5.1	114
103	Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms, 2012, 37, 642-655.	2.5	114
104	Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE, 2017, 12, e0172293.	2.5	114
105	Role of Mineral-Nitrogen in Residue Decomposition and Stable Soil Organic Matter Formation. Soil Science Society of America Journal, 2005, 69, 1730-1736.	2.2	112
106	Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 2011, 48, 53-62.	4.3	112
107	Title is missing!. Plant and Soil, 2001, 234, 27-36.	3.7	108
108	An initial investigation into the organic matter biogeochemistry of the Congo River. Geochimica Et Cosmochimica Acta, 2012, 84, 614-627.	3.9	108

#	Article	IF	CITATIONS
109	Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity. European Journal of Soil Science, 2005, 56, 453-467.	3.9	107
110	How reliable is the intramolecular distribution of 15N in N2O to source partition N2O emitted from soil?. Soil Biology and Biochemistry, 2013, 65, 114-127.	8.8	107
111	Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. European Journal of Soil Science, 2006, 57, 693-707.	3.9	106
112	Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil and Tillage Research, 2009, 106, 36-44.	5.6	106
113	Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma, 2016, 272, 39-50.	5.1	106
114	Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131, 308-314.	5.3	105
115	Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agriculture, Ecosystems and Environment, 2014, 191, 27-38.	5.3	105
116	Carbon cost of collective farming collapse in Russia. Global Change Biology, 2014, 20, 938-947.	9.5	104
117	Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements. Frontiers in Earth Science, 2016, 4, .	1.8	104
118	Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7, .	10.3	104
119	Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biology and Biochemistry, 2014, 69, 398-405.	8.8	101
120	Microbial contributions to the aggregation of a cultivated grassland soil amended with starch. Soil Biology and Biochemistry, 1999, 31, 407-419.	8.8	100
121	Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma, 2006, 130, 14-25.	5.1	100
122	Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. European Journal of Soil Science, 2004, 55, 393-399.	3.9	99
123	Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biology, 2006, 12, 561-567.	9.5	98
124	An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Science of the Total Environment, 2013, 465, 298-307.	8.0	98
125	Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biology and Biochemistry, 2007, 39, 1014-1022.	8.8	97
126	Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. , 2011, 21, 695-703.		97

#	Article	IF	Citations
127	Mobilization of aged and biolabile soil carbon by tropical deforestation. Nature Geoscience, 2019, 12, 541-546.	12.9	97
128	Fertilizer and Residue Quality Effects on Organic Matter Stabilization in Soil Aggregates. Soil Science Society of America Journal, 2009, 73, 961-966.	2.2	96
129	Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	96
130	Soil organic carbon and total nitrogen in intensively managed arable soils. Agriculture, Ecosystems and Environment, 2012, 150, 102-110.	5.3	90
131	Interpretation of Soil Carbon and Nitrogen Dynamics in Agricultural and Afforested Soils. Soil Science Society of America Journal, 2003, 67, 1620-1628.	2.2	89
132	The Role of Soil Characteristics on Temperature Sensitivity of Soil Organic Matter. Soil Science Society of America Journal, 2011, 75, 56-68.	2.2	88
133	Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT ₈₈ /Overlock
134	Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agriculture, Ecosystems and Environment, 2009, 129, 378-390.	5.3	87
135	Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biology, 2010, 16, 2789-2798.	9.5	87
136	Evidence for Carbon Saturation in a Highly Structured and Organicâ€Matterâ€Rich Soil. Soil Science Society of America Journal, 2010, 74, 130-138.	2.2	85
137	Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm. Biology and Fertility of Soils, 2015, 51, 573-582.	4.3	84
138	Impact of Tillage and Crop Rotation on Aggregateâ€Associated Carbon in Two Oxisols. Soil Science Society of America Journal, 2005, 69, 482-491.	2.2	83
139	Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. Soil and Tillage Research, 2015, 146, 213-222.	5.6	83
140	Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. European Journal of Soil Science, 2006, 57, 456-467.	3.9	82
141	Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agriculture, Ecosystems and Environment, 2014, 191, 17-26.	5.3	81
142	Sustainable intensification of agricultural drainage. Nature Sustainability, 2019, 2, 914-921.	23.7	80
143	Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biology and Biochemistry, 2013, 58, 198-206.	8.8	77
144	A re-evaluation of the enriched labile soil organic matter fraction. European Journal of Soil Science, 2000, 51, 283-293.	3.9	76

#	Article	IF	Citations
145	Contrasting ecosystem recovery on two soil textures: implications for carbon mitigation and grassland conservation. Ecosphere, 2010, 1, 1-22.	2.2	76
146	Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 2021, 14, 289-294.	12.9	76
147	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	4.1	75
148	Recycling of sodium polytungstate used in soil organic matter studies. Soil Biology and Biochemistry, 1999, 31, 1193-1196.	8.8	74
149	Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Biology and Biochemistry, 2018, 116, 91-98.	8.8	74
150	Earthworm populations in relation to soil organic matter dynamics and management in California tomato cropping systems. Applied Soil Ecology, 2009, 41, 206-214.	4.3	73
151	Mitigating N ₂ O emissions from soil: from patching leaks to transformative action. Soil, 2015, 1, 687-694.	4.9	73
152	Elevated CO 2 increases nitrogen rhizodeposition and microbial immobilization of rootâ€derived nitrogen. New Phytologist, 2007, 173, 778-786.	7.3	71
153	Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma, 2010, 155, 320-328.	5.1	70
154	Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Frontiers in Environmental Science, 2015, 3, .	3.3	69
155	Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Research, 2015, 183, 204-210.	5.1	69
156	Tillage and Field Scale Controls on Greenhouse Gas Emissions. Journal of Environmental Quality, 2006, 35, 714-725.	2.0	68
157	AggModel: A soil organic matter model with measurable pools for use in incubation studies. Ecological Modelling, 2013, 263, 1-9.	2.5	68
158	Optimal Fertilizer Nitrogen Rates and Yield-Scaled Global Warming Potential in Drill Seeded Rice. Journal of Environmental Quality, 2013, 42, 1623-1634.	2.0	68
159	Give soils their due. Science, 2015, 347, 695-695.	12.6	68
160	Shade trees have limited benefits for soil fertility in cocoa agroforests. Agriculture, Ecosystems and Environment, 2017, 243, 83-91.	5.3	68
161	Can soil-less crop production be a sustainable option for soil conservation and future agriculture?. Land Use Policy, 2017, 69, 102-105.	5.6	68
162	What can we learn from N ₂ O isotope data? – Analytics, processes and modelling. Rapid Communications in Mass Spectrometry, 2020, 34, e8858.	1.5	67

#	Article	IF	CITATIONS
163	Toward a Better Assessment of Biochar–Nitrous Oxide Mitigation Potential at the Field Scale. Journal of Environmental Quality, 2017, 46, 237-246.	2.0	66
164	Organic and Mineral Input Management to Enhance Crop Productivity in Central Kenya. Agronomy Journal, 2009, 101, 1266-1275.	1.8	65
165	Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil and Tillage Research, 2009, 104, 256-262.	5.6	65
166	Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biology and Biochemistry, 2010, 42, 1523-1533.	8.8	64
167	The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma, 2013, 200-201, 90-98.	5.1	64
168	Comparison of organic versus mineral resource effects on short-term aggregate carbon and nitrogen dynamics in a sandy soil versus a fine textured soil. Agriculture, Ecosystems and Environment, 2011, 140, 361-371.	5.3	63
169	Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Science of the Total Environment, 2015, 515-516, 30-38.	8.0	63
170	Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant and Soil, 2011, 338, 159-169.	3.7	61
171	Root carbon inputs under moderately diverse sward and conventional ryegrass-clover pasture: implications for soil carbon sequestration. Plant and Soil, 2015, 392, 289-299.	3.7	61
172	Origins, seasonality, and fluxes of organic matter in the Congo River. Global Biogeochemical Cycles, 2016, 30, 1105-1121.	4.9	59
173	Positive Effects of Crop Diversity on Productivity Driven by Changes in Soil Microbial Composition. Frontiers in Microbiology, 2021, 12, 660749.	3.5	59
174	Agricultural management affects earthworm and termite diversity across humid to semi-arid tropical zones. Agriculture, Ecosystems and Environment, 2011, 140, 148-154.	5.3	56
175	Water repellence and soil aggregate dynamics in a loamy grassland soil as affected by texture. European Journal of Soil Science, 2006, 57, 235-246.	3.9	55
176	Residue Carbon Stabilization in Soil Aggregates of Noâ€Till and Tillage Management of Dryland Cropping Systems. Soil Science Society of America Journal, 2008, 72, 507-513.	2.2	54
177	Effect of climate change on field crop production in California's Central Valley. Climatic Change, 2011, 109, 335-353.	3.6	54
178	Biochemical changes across a carbon saturation gradient: Lignin, cutin, and suberin decomposition and stabilization in fractionated carbon pools. Soil Biology and Biochemistry, 2012, 47, 179-190.	8.8	54
179	The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 687-702.	3.0	54
180	Global patterns of geo-ecological controls on the response of soil respiration to warming. Nature Climate Change, 2021, 11, 623-627.	18.8	54

#	Article	IF	Citations
181	Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutrient Cycling in Agroecosystems, 2010, 88, 121-131.	2.2	53
182	Case study on potential agricultural responses to climate change in a California landscape. Climatic Change, 2011, 109, 407-427.	3.6	53
183	Clay illuviation provides a long-term sink for C sequestration in subsoils. Scientific Reports, 2017, 7, 45635.	3.3	53
184	Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. European Journal of Soil Science, 2006, 57, 774-786.	3.9	52
185	Simulating switchgrass biomass production across ecoregions using the DAYCENT model. GCB Bioenergy, 2012, 4, 521-533.	5.6	52
186	Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant and Soil, 2017, 415, 37-55.	3.7	52
187	The Role of Particulate Organic Matter in Phosphorus Cycling. Soil Science Society of America Journal, 2003, 67, 181.	2.2	52
188	Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis. PLoS ONE, 2020, 15, e0239552.	2.5	51
189	Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biology and Biochemistry, 2009, 41, 1094-1103.	8.8	50
190	Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation. Geoderma, 2016, 262, 147-154.	5.1	50
191	Hierarchical saturation of soil carbon pools near a natural CO2spring. Global Change Biology, 2007, 13, 1282-1293.	9.5	49
192	Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system. Ecological Applications, 2010, 20, 1061-1073.	3.8	48
193	Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nature Sustainability, 2022, 5, 770-779.	23.7	48
194	Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biology and Biochemistry, 2006, 38, 1608-1614.	8.8	47
195	Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludgeâ€"A field experiment. Geoderma, 2014, 219-220, 24-31.	5.1	47
196	Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biology and Biochemistry, 2018, 120, 58-69.	8.8	47
197	Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management, 2014, 5, 185-192.	2.4	46
198	Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Applied Soil Ecology, 2016, 103, 110-116.	4.3	45

#	Article	IF	Citations
199	First on-line isotopic characterization of N ₂ O above intensively managed grassland. Biogeosciences, 2015, 12, 2517-2531.	3.3	44
200	Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil and Tillage Research, 2018, 180, 1-9.	5.6	44
201	Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management. Ecological Applications, 2010, 20, 1805-1819.	3.8	43
202	Land use effects on soil carbon fractions in the southeastern United States. II. changes in soil carbon fractions along a forest to pasture chronosequence. Biology and Fertility of Soils, 2004, 40, 194.	4.3	42
203	Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant and Soil, 2012, 356, 315-330.	3.7	42
204	Restoration and management for plant diversity enhances the rate of belowground ecosystem recovery. Ecological Applications, 2017, 27, 355-362.	3.8	42
205	Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agriculture, Ecosystems and Environment, 2018, 265, 544-555.	5.3	41
206	Building Up Organic Matter in a Subtropical Paleudult under Legume Coverâ€Cropâ€Based Rotations. Soil Science Society of America Journal, 2009, 73, 1699-1706.	2.2	40
207	Integrated Soil Fertility Management: Aggregate carbon and nitrogen stabilization in differently textured tropical soils. Soil Biology and Biochemistry, 2013, 67, 124-132.	8.8	40
208	Sustained high magnitude erosional forcing generates an organic carbon sink: Test and implications in the Loess Plateau, China. Earth and Planetary Science Letters, 2015, 411, 281-289.	4.4	40
209	Does shade tree diversity increase soil fertility in cocoa plantations?. Agriculture, Ecosystems and Environment, 2017, 248, 190-199.	5.3	40
210	Agroforestry systems can mitigate the severity of cocoa swollen shoot virus disease. Agriculture, Ecosystems and Environment, 2018, 252, 83-92.	5.3	40
211	Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment. Global Change Biology, 2006, 12, 2187-2199.	9.5	39
212	Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agriculture, Ecosystems and Environment, 2011, 144, 150-158.	5.3	39
213	A Regional Bioâ€economic Model of Nitrogen Use in Cropping. American Journal of Agricultural Economics, 2014, 96, 67-91.	4.3	39
214	Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecological Monographs, 2019, 89, e01342.	5.4	39
215	Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biology and Biochemistry, 2005, 37, 497-506.	8.8	38
216	Direct N2O emissions following transition from conventional till to no-till in a cover cropped Mediterranean vineyard (Vitis vinifera). Agriculture, Ecosystems and Environment, 2011, 141, 234-239.	5.3	38

#	Article	IF	CITATIONS
217	Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture. Soil Biology and Biochemistry, 2019, 134, 81-89.	8.8	37
218	Elevated CO2 does not favor a fungal decomposition pathway. Soil Biology and Biochemistry, 2007, 39, 2168-2172.	8.8	36
219	Testing for soil carbon saturation behavior in agricultural soils receiving long-term manure amendments. Canadian Journal of Soil Science, 2014, 94, 281-294.	1.2	36
220	Soil fertility decline at the base of rural poverty in sub-Saharan Africa. Nature Plants, 2015, 1, 15101.	9.3	36
221	Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape. Biogeosciences, 2015, 12, 1357-1371.	3.3	36
222	Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil, 2015, 1, 707-717.	4.9	36
223	Mapping Crop Calendar Events and Phenology-Related Metrics at the Parcel Level by Object-Based Image Analysis (OBIA) of MODIS-NDVI Time-Series: A Case Study in Central California. Remote Sensing, 2018, 10, 1745.	4.0	36
224	Attribution of N ₂ O sources in a grassland soil with laser spectroscopy based isotopocule analysis. Biogeosciences, 2019, 16, 3247-3266.	3.3	36
225	Soil fertility and Theobroma cacao growth and productivity under commonly intercropped shade-tree species in Sulawesi, Indonesia. Plant and Soil, 2020, 453, 87-104.	3.7	36
226	Biomass yield and nitrogen use of potential C4 and C3 dedicated energy crops in a Mediterranean climate. Field Crops Research, 2014, 161, 149-157.	5.1	35
227	A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia, 2013, 173, 1439-1450.	2.0	34
228	N ₂ O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison. Atmospheric Measurement Techniques, 2020, 13, 2797-2831.	3.1	34
229	Whole-profile soil organic matter content, composition, and stability under cropping systems that differ in belowground inputs. Agriculture, Ecosystems and Environment, 2020, 291, 106810.	5. 3	33
230	The relationship between landform and the distribution of soil C, N and P under conventional and minimum tillage. Geoderma, 2008, 144, 180-188.	5.1	32
231	Critical assessment of the applicability of gas chromatographyâ€combustionâ€isotope ratio mass spectrometry to determine amino sugar dynamics in soil. Rapid Communications in Mass Spectrometry, 2009, 23, 1201-1211.	1.5	32
232	The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa. Frontiers in Plant Science, 2017, 8, 1953.	3.6	32
233	Soil aggregates control N cycling efficiency in long-term conventional and alternative cropping systems. Nutrient Cycling in Agroecosystems, 2007, 79, 45-58.	2.2	31
234	Plant and Soil Responses to High and Low Diversity Grassland Restoration Practices. Environmental Management, 2012, 49, 412-424.	2.7	31

#	Article	IF	CITATIONS
235	Early season N ₂ O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile. Biogeosciences, 2019, 16, 383-408.	3.3	31
236	Does Physical Protection of Soil Organic Matter Attenuate Temperature Sensitivity?. Soil Science Society of America Journal, 2009, 73, 1168-1172.	2.2	30
237	Landâ€use controls on carbon biogeochemistry in lowland streams of the Congo Basin. Global Change Biology, 2020, 26, 1374-1389.	9.5	30
238	Continental-scale controls on soil organic carbon across sub-Saharan Africa. Soil, 2021, 7, 305-332.	4.9	30
239	Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Communications, $2021, 1, \dots$	4.2	30
240	Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms. Frontiers in Plant Science, 2022, 13, 827369.	3.6	30
241	Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling. Global Change Biology, 2004, 10, 1922-1935.	9.5	29
242	Conversion of Wheat–Maize to Vegetable Cropping Systems Changes Soil Organic Matter Characteristics. Soil Science Society of America Journal, 2010, 74, 1320-1326.	2.2	29
243	Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agriculture, Ecosystems and Environment, 2013, 164, 190-199.	5.3	29
244	Nitrogen fertilizer use in California: Assessing the data, trends and a way forward. California Agriculture, 2013, 67, 68-79.	0.8	28
245	Belowground Ecosystem Recovery During Grassland Restoration: South African Highveld Compared to US Tallgrass Prairie. Ecosystems, 2015, 18, 390-403.	3.4	28
246	Quantification of Soil Permanganate Oxidizable C (POXC) Using Infrared Spectroscopy. Soil Science Society of America Journal, 2017, 81, 277-288.	2.2	28
247	The century experiment: the first twenty years of <scp>UC</scp> Davis' Mediterranean agroecological experiment. Ecology, 2018, 99, 503-503.	3.2	28
248	Prevention of Fusarium head blight infection and mycotoxins in wheat with cut-and-carry biofumigation and botanicals. Field Crops Research, 2020, 246, 107681.	5.1	28
249	Rainfall seasonality and timing: implications for cereal crop production in Ethiopia. Agricultural and Forest Meteorology, 2021, 310, 108633.	4.8	28
250	Estimating Turnover of Soil Organic Carbon Fractions Based on Radiocarbon Measurements. Radiocarbon, 2005, 47, 99-113.	1.8	28
251	Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agroecosystems of Honduras. Pedobiologia, 2010, 53, 327-335.	1.2	27
252	Direct N2O emissions from a Mediterranean vineyard: Event-related baseline measurements. Agriculture, Ecosystems and Environment, 2014, 195, 44-52.	5.3	27

#	Article	IF	CITATIONS
253	On-farm trial assessing combined organic and mineral fertilizer amendments on vegetable yields in central Uganda. Agriculture, Ecosystems and Environment, 2016, 225, 62-71.	5.3	27
254	Nitrogen utilization and environmental losses in organic greenhouse lettuce amended with two distinct biochars. Science of the Total Environment, 2017, 598, 1169-1176.	8.0	27
255	Restricting the nonlinearity parameter in soil greenhouse gas flux calculation for more reliable flux estimates. PLoS ONE, 2018, 13, e0200876.	2.5	27
256	Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biology and Biochemistry, 2020, 150, 107998.	8.8	27
257	Controls on dissolved organic carbon composition and export from rice-dominated systems. Biogeochemistry, 2012, 108, 447-466.	3.5	26
258	Seasonal Losses of Dissolved Organic Carbon and Total Dissolved Solids from Rice Production Systems in Northern California. Journal of Environmental Quality, 2010, 39, 304-313.	2.0	25
259	Soil nitrogen transformations under elevated atmospheric CO2 and O3 during the soybean growing season. Environmental Pollution, 2011, 159, 401-407.	7.5	25
260	Yield and Nitrogen Management of Irrigated Switchgrass Systems in Diverse Ecoregions. Agronomy Journal, 2013, 105, 311-320.	1.8	25
261	Photodegradation effects on CO2 emissions from litter and SOM and photo-facilitation of microbial decomposition in a California grassland. Soil Biology and Biochemistry, 2015, 91, 40-49.	8.8	25
262	Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers. Biogeochemistry, 2020, 148, 255-269.	3.5	25
263	Agronomic gain: Definition, approach, and application. Field Crops Research, 2021, 270, 108193.	5.1	25
264	Estimating vital statistics and age distributions of measurable soil organic carbon fractions based on their pathway of formation and radiocarbon content. Journal of Theoretical Biology, 2004, 230, 241-250.	1.7	24
265	In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME Journal, 2021, 15, 3357-3374.	9.8	24
266	Annual carbon and nitrogen loadings for a furrow-irrigated field. Agricultural Water Management, 2009, 96, 925-930.	5.6	23
267	Microbial Communities and Soil Structure are Affected by Reduced Precipitation, but Not by Elevated Carbon Dioxide. Soil Science Society of America Journal, 2013, 77, 482-488.	2.2	23
268	Longâ€term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica, 2019, 51, 319-329.	1.6	23
269	Soil 13 C-15 N dynamics in an N2 -fixing clover system under long-term exposure to elevated atmospheric CO2. Global Change Biology, 2003, 9, 1751-1762.	9.5	22
270	Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biology and Biochemistry, 2011, 43, 2347-2354.	8.8	22

#	Article	IF	CITATIONS
271	Longâ€term nonâ€flooded mulching cultivation influences rice productivity and soil organic carbon. Soil Use and Management, 2012, 28, 544-550.	4.9	22
272	Exclusion of soil macrofauna did not affect soil quality but increased crop yields in a sub-humid tropical maize-based system. Agriculture, Ecosystems and Environment, 2015, 208, 75-85.	5.3	22
273	Combatting Cocoa Swollen Shoot Virus Disease: What do we know?. Crop Protection, 2017, 98, 76-84.	2.1	22
274	Assessing Shortâ€Term Impacts of Management Practices on N ₂ O Emissions From Diverse Mediterranean Agricultural Ecosystems Using a Biogeochemical Model. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1557-1571.	3.0	22
275	The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils. Soil, 2021, 7, 453-475.	4.9	22
276	Effects of Detrital Inputs and Roots on Carbon Saturation Deficit of a Temperate Forest Soil. Soil Science Society of America Journal, 2014, 78, S76.	2.2	21
277	Grazing-related nitrous oxide emissions: from patch scale to field scale. Biogeosciences, 2019, 16, 1685-1703.	3.3	21
278	Factors controlling aggregation in a minimum and a conventionally tilled undulating field. European Journal of Soil Science, 2007, 58, 1017-1026.	3.9	20
279	Evaluation of CO2 fluxes from an agricultural field using a process-based numerical model. Journal of Hydrology, 2008, 361, 131-143.	5.4	20
280	The Potential for California Agricultural Crop Soils to Reduce Greenhouse Gas Emissions. Advances in Agronomy, 2010, , 123-162.	5.2	20
281	Potentials to mitigate greenhouse gas emissions from Swiss agriculture. Agriculture, Ecosystems and Environment, 2018, 265, 84-102.	5.3	20
282	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20
283	Soil management effects on organic carbon in isolated fractions of a Gray Luvisol. Canadian Journal of Soil Science, 2006, 86, 141-151.	1.2	19
284	Fungal friends against drought. Nature Climate Change, 2012, 2, 234-235.	18.8	19
285	Assessing the degree of localness of food value chains. Agroecology and Sustainable Food Systems, 2018, 42, 573-598.	1.9	19
286	Farmer perceptions of plant–soil interactions can affect adoption of sustainable management practices in cocoa agroforests: a case study from Southeast Sulawesi. Ecology and Society, 2018, 23, .	2.3	19
287	On-farm study reveals positive relationship between gas transport capacity and organic carbon content in arable soil. Soil, 2019, 5, 91-105.	4.9	19
288	Switchgrass is a promising, high-yielding crop for California biofuel. California Agriculture, 2011, 65, 168-173.	0.8	19

#	Article	IF	Citations
289	Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. PLoS ONE, 2016, 11, e0150837.	2.5	18
290	Considerations of a field-scale soil carbon budget for furrow irrigation. Agriculture, Ecosystems and Environment, 2006, 113, 391-398.	5.3	17
291	The impact of long-term elevated CO2 on C and N retention in stable SOM pools. Plant and Soil, 2008, 303, 311-321.	3.7	17
292	Potential of indicators to unveil the hidden side of cropping system classification: Differences and similarities in cropping practices between conventional, no-till and organic systems. European Journal of Agronomy, 2019, 109, 125920.	4.1	17
293	Control of Fusarium graminearum in Wheat With Mustard-Based Botanicals: From in vitro to in planta. Frontiers in Microbiology, 2020, 11, 1595.	3.5	17
294	Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms. Nature Sustainability, 2022, 5, 64-70.	23.7	17
295	Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 2022, 13, 330.	12.8	17
296	Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biology and Biochemistry, 2005, 37, 2277-2282.	8.8	16
297	Tillage Effects on Spatiotemporal Variability of Particulate Organic Matter. Applied and Environmental Soil Science, 2009, 2009, 1-14.	1.7	16
298	Discerning Agricultural Management Effects on Nitrous Oxide Emissions from Conventional and Alternative Cropping Systems: A California Case Study. ACS Symposium Series, 2011, , 203-226.	0.5	16
299	N use efficiencies and N ₂ O emissions in two contrasting, biochar amended soils under winter wheatâ€"cover cropâ€"sorghum rotation. Environmental Research Letters, 2016, 11, 084013.	5.2	16
300	Season and location–specific nitrous oxide emissions in an almond orchard in California. Nutrient Cycling in Agroecosystems, 2017, 107, 139-155.	2.2	16
301	Earthworm Lumbricus terrestris mediated redistribution of C and N into large macroaggregate-occluded soil fractions in fine-textured no-till soils. Applied Soil Ecology, 2019, 140, 26-34.	4.3	16
302	The Pulse of the Amazon: Fluxes of Dissolved Organic Carbon, Nutrients, and Ions From the World's Largest River. Global Biogeochemical Cycles, 2021, 35, e2020GB006895.	4.9	16
303	On the potential of î' <scp>¹⁸O</scp> and î' <scp>¹⁵N</scp> to assess <scp>N₂O</scp> reduction to <scp>N₂</scp> in soil. European Journal of Soil Science, 2013, 64, 610-620.	3.9	15
304	Changes in potential denitrification-derived N2O emissions following conversion of grain to greenhouse vegetable cropping systems. European Journal of Soil Biology, 2015, 68, 94-100.	3.2	15
305	Assessing the Climate Regulation Potential of Agricultural Soils Using a Decision Support Tool Adapted to Stakeholders' Needs and Possibilities. Frontiers in Environmental Science, 2019, 7, .	3.3	15
306	The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agricultural Systems, 2021, 192, 103198.	6.1	15

#	Article	IF	Citations
307	Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agriculture, Ecosystems and Environment, 2021, 318, 107487.	5.3	15
308	N ₂ O emissions from California farmlands: A review. California Agriculture, 2017, 71, 148-159.	0.8	15
309	The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis. Soil, 2021, 7, 693-715.	4.9	15
310	A wellâ€established fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration. European Journal of Soil Science, 2022, 73, .	3.9	15
311	Assessing drivers of N2O production in California tomato cropping systems. Science of the Total Environment, 2013, 465, 36-47.	8.0	14
312	New methodology for soil aggregate fractionation to investigate phosphorus transformations in iron oxideâ€rich tropical agricultural soil. European Journal of Soil Science, 2017, 68, 115-125.	3.9	14
313	Use of Botanicals to Suppress Different Stages of the Life Cycle of <i>Fusarium graminearum</i> Phytopathology, 2019, 109, 2116-2123.	2.2	14
314	Organic Molecular Signatures of the Congo River and Comparison to the Amazon. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
315	Characterization of soil organic matter. , 2010, , 91-126.		13
316	Modeling methane and nitrous oxide emissions from directâ€seeded rice systems. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2011-2035.	3.0	13
317	Development of a field-deployable method for simultaneous, real-time measurements of the four most abundant N ₂ O isotopocules. Isotopes in Environmental and Health Studies, 2018, 54, 1-15.	1.0	13
318	Nutrient flows and intensification options for smallholder farmers of the Lao uplands. Agricultural Systems, 2020, 177, 102694.	6.1	13
319	The soil organic carbon stabilization potential of old and new wheat cultivars: a ¹³ CO ₂ -labeling study. Biogeosciences, 2020, 17, 2971-2986.	3.3	13
320	Soil greenhouse gas budget of two intensively managed grazing systems. Agricultural and Forest Meteorology, 2020, 287, 107960.	4.8	13
321	Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring. Soil, 2021, 7, 525-546.	4.9	13
322	Organic matter cycling along geochemical, geomorphic, and disturbance gradients in forest and cropland of the African Tropics – project TropSOC database version 1.0. Earth System Science Data, 2021, 13, 4133-4153.	9.9	13
323	Plant nutrition for sustainable development and global health. Plant and Soil, 2011, 339, 1-2.	3.7	12
324	Effects of elevated CO2 and O3 on N-cycling and N2O emissions: a short-term laboratory assessment. Plant and Soil, 2012, 351, 277-292.	3.7	12

#	Article	IF	Citations
325	An assessment of N-cycling and sources of N2O during a simulated rain event using natural abundance 15N. Agriculture, Ecosystems and Environment, 2013, 165, 141-150.	5.3	12
326	Productivity, ¹⁵ N dynamics and water use efficiency in low―and high―input switchgrass systems. GCB Bioenergy, 2014, 6, 704-716.	5.6	12
327	Switchgrass in California: where, and at what price?. GCB Bioenergy, 2014, 6, 672-686.	5.6	12
328	A call for international soil experiment networks for studying, predicting, and managing global change impacts. Soil, 2015, 1, 575-582.	4.9	12
329	Resilience Assessment of Swiss Farming Systems: Piloting the SHARP-Tool in Vaud. Sustainability, 2018, 10, 4435.	3.2	12
330	Spatial and temporal variations of greenhouse gas emissions from a waste stabilization pond: Effects of sludge distribution and accumulation. Water Research, 2021, 193, 116858.	11.3	12
331	Realistic payments could encourage farmers to adopt practices that sequester carbon. California Agriculture, 2009, 63, 91-95.	0.8	12
332	Forty percent revenue increase by combining organic and mineral nutrient amendments in Ugandan smallholder market vegetable production. Agronomy for Sustainable Development, 2012, 32, 831-839.	5. 3	11
333	The social costs of second-best policies: Evidence from agricultural GHG mitigation. Journal of Environmental Economics and Management, 2017, 82, 39-73.	4.7	11
334	Nitrified Human Urine as a Sustainable and Socially Acceptable Fertilizer: An Analysis of Consumer Acceptance in Msunduzi, South Africa. Sustainability, 2019, 11, 2456.	3.2	11
335	Du Feu à l'Eau: Source and Flux of Dissolved Black Carbon From the Congo River. Global Biogeochemical Cycles, 2020, 34, e2020GB006560.	4.9	11
336	Denitrification Is the Main Nitrous Oxide Source Process in Grassland Soils According to Quasiâ€Continuous Isotopocule Analysis and Biogeochemical Modeling. Global Biogeochemical Cycles, 2020, 34, e2019GB006505.	4.9	11
337	Modeling shows that alternative soil management can decrease greenhouse gases. California Agriculture, 2009, 63, 84-90.	0.8	11
338	Conservation agriculture: Systems thinking for sustainable farming. California Agriculture, 2016, 70, 53-56.	0.8	11
339	Raising up to the climate challenge - Understanding and assessing farmers' strategies to build their resilience. A comparative analysis between Ugandan and Swiss farmers. Journal of Rural Studies, 2022, 89, 1-12.	4.7	11
340	Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use. Environmental Science and Pollution Research, 2022, 29, 37277-37290.	5.3	11
341	Ebullitive CH4 flux and its mitigation potential by aeration in freshwater aquaculture: Measurements and global data synthesis. Agriculture, Ecosystems and Environment, 2022, 335, 108016.	5.3	11
342	Prolonged elevated atmospheric CO2 does not affect decomposition of plant material. Soil Biology and Biochemistry, 2006, 38, 187-190.	8.8	10

#	Article	IF	Citations
343	Nitrogen and Potassium Fertility Impacts on Aggregate Sheath Spot Disease and Yields of Rice. Plant Production Science, 2008, 11, 260-267.	2.0	10
344	Elevated CO2 and O3 modify N turnover rates, but not N2O emissions in a soybean agroecosystem. Soil Biology and Biochemistry, 2012, 51, 104-114.	8.8	10
345	Soil Nutrient Depletion and Tree Functional Composition Shift Following Repeated Clearing in Secondary Forests of the Congo Basin. Ecosystems, 2021, 24, 1422-1435.	3.4	10
346	Moderate shading did not affect barley yield in temperate silvoarable agroforestry systems. Agroforestry Systems, 2022, 96, 799-810.	2.0	10
347	Spare our restored soil. Nature, 2013, 498, 180-181.	27.8	9
348	Stand age affects emissions of N2O in flood-irrigated alfalfa: a comparison of field measurements, DNDC model simulations and IPCC Tier 1 estimates. Nutrient Cycling in Agroecosystems, 2016, 106, 335-345.	2.2	9
349	A Transdisciplinary Approach for the Development of Sustainable Yam (Dioscorea sp.) Production in West Africa. Sustainability, 2020, 12, 4016.	3.2	9
350	Biophysical potential of organic cropping practices as a sustainable alternative in Switzerland. Agricultural Systems, 2020, 181, 102822.	6.1	9
351	Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin. Soil, 2021, 7, 83-94.	4.9	9
352	Herbicide application during pasture renewal initially increases root turnover and carbon input to soil in perennial ryegrass and white clover pasture. Plant and Soil, 2017, 412, 133-142.	3.7	8
353	Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry, 2021, 156, 131-143.	3.5	8
354	Pedoclimatic factors and management determine soil organic carbon and aggregation in farmer fields at a regional scale. Geoderma, 2022, 409, 115632.	5.1	8
355	Crediting uncertain ecosystem services in a market. Journal of Environmental Economics and Management, 2013, 66, 554-572.	4.7	7
356	Potential regional productivity and greenhouse gas emissions of fertilized and irrigated switchgrass in a Mediterranean climate. Agriculture, Ecosystems and Environment, 2015, 212, 64-74.	5.3	7
357	Quantification of ecosystem C dynamics in a longâ€ŧerm FACE study on permanent grassland. Rapid Communications in Mass Spectrometry, 2016, 30, 963-972.	1.5	7
358	Identifying viable nutrient management interventions at the farm level: The case of smallholder organic Basmati rice production in Uttarakhand, India. Agricultural Systems, 2018, 161, 61-71.	6.1	7
359	On-farm assessment of cassava root yield response to tillage, plant density, weed control and fertilizer application in southwestern Nigeria. Field Crops Research, 2021, 262, 108038.	5.1	7
360	Assessment of sustainable land use: linking land management practices to sustainable land use indicators. International Journal of Agricultural Sustainability, 2022, 20, 265-288.	3.5	7

#	Article	IF	Citations
361	Understanding changes in cassava root dry matter yield by different planting dates, crop ages at harvest, fertilizer application and varieties. European Journal of Agronomy, 2022, 133, 126448.	4.1	7
362	Cassava-maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics, and yields of component crops. Field Crops Research, 2022, 283, 108550.	5.1	7
363	Direct and Indirect Economic Incentives to Mitigate Nitrogen Surpluses: A Sensitivity Analysis. Jasss, 2017, 20, .	1.8	6
364	Seasonality, drivers, and isotopic composition of soil CO ₂ fluxes from tropical forests of the Congo Basin. Biogeosciences, 2020, 17, 6207-6218.	3.3	6
365	Fluvial sediment export from pristine forested headwater catchments in the Congo Basin. Geomorphology, 2022, 398, 108046.	2.6	6
366	Monitoring soil carbon will prepare growers for a carbon trading system. California Agriculture, 2013, 67, 162-171.	0.8	5
367	Soil microhabitats mediate microbial response in organic reduced tillage cropping. Applied Soil Ecology, 2019, 137, 39-48.	4.3	5
368	Biochar Enhances Nitrous Oxide Reduction in Acidic but Not in Near-Neutral pH Soil. Soil Systems, 2019, 3, 69.	2.6	5
369	Simulation of a regional soil nitrogen balance in Swiss croplands. Nutrient Cycling in Agroecosystems, 2020, 118, 9-22.	2.2	5
370	Immobilization and stabilization of volcanic ash in soil aggregates in semiarid meadows of Northern Patagonia. Geoderma, 2021, 392, 114987.	5.1	5
371	Dinitrogen Fixation by Winter Chickpea Across Scales in Waterlogged Soil in a Mediterranean Climate. Journal of Agronomy and Crop Science, 2011, 197, 135-145.	3.5	4
372	Social network to inform and prevent the spread of cocoa swollen shoot virus disease in Ghana. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	4
373	Reduction of nitrogen pollution in agriculture through nitrogen surplus quotas: an analysis of individual marginal abatement cost and different quota allocation schemes using an agent-based model. Journal of Environmental Planning and Management, 2021, 64, 1375-1391.	4.5	4
374	Developing recommendations for increased productivity in cassava-maize intercropping systems in Southern Nigeria. Field Crops Research, 2021, 272, 108283.	5.1	4
375	Mixed Effects of Soil Compaction on the Nitrogen Cycle Under Pea and Wheat. Frontiers in Microbiology, 2021, 12, 822487.	3.5	4
376	Comparable bacterial-mediated nitrogen supply and losses under organic reduced tillage and conventional intensive tillage. European Journal of Soil Biology, 2019, 95, 103121.	3.2	3
377	Soil fertility maintenance with organic amendments to orange fleshed sweetpotato. Nutrient Cycling in Agroecosystems, 2021, 119, 213-229.	2.2	3
378	Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library. Soil, 2021, 7, 193-215.	4.9	3

#	Article	IF	CITATIONS
379	Soil Nitrous Oxide Emission and Methane Exchange From Diversified Cropping Systems in Pannonian Region. Frontiers in Environmental Science, 2022, 10, .	3.3	3
380	A food tax only minimally reduces the N surplus of Swiss agriculture. Agricultural Systems, 2021, 194, 103271.	6.1	2
381	Mapas de calendario de cultivo y variables fenol $ ilde{A}^3$ gicas mediante el an $ ilde{A}_i$ lisis de im $ ilde{A}_i$ genes MODIS y ASTER basado en objetos. Revista De Teledeteccion, 2014, .	0.6	2
382	Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa. Soil, 2021, 7, 717-731.	4.9	2
383	Reply to: Comment on "Determining soil carbon stock changes: Simple bulk density corrections fail― [Agric. Ecosyst. Environ. 134 (2009) 251–256]. Agriculture, Ecosystems and Environment, 2010, 136, 187-187.	5. 3	1
384	Trade-offs Associated with Using Soil Carbon Sequestration as Climate Change Mitigation. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 365-392.	0.4	1
385	Response to G.W. Sileshi's Letter to the Editor on AGEE13857 (2015): Exclusion of soil macrofauna did not affect soil quality – statistical artefact or true lack of effect?. Agriculture, Ecosystems and Environment, 2016, 221, 282-284.	5. 3	1
386	Conservative N cycling despite high atmospheric deposition in early successional African tropical lowland forests. Plant and Soil, 2022, 477, 743-758.	3.7	1
387	Corrigendum to "Direct N2O emissions following transition from conventional till to no-till in a cover cropped Mediterranean vineyard (Vitis vinifera)―[Agric. Ecosyst. Environ. 141 (2011) 234–239]. Agriculture, Ecosystems and Environment, 2011, 144, 422.	5. 3	O
388	Corrigendum to "Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation―[Agric. Ecosys. Environ. 170C (2013): 16–27]. Agriculture, Ecosystems and Environment, 2014, 196, 185.	5. 3	0
389	Beyond feasibilityâ€"the role of motivation to implement measures to enhance resilience. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	0
390	Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes. Ecosystems, 0, , .	3.4	0