
S E De Mink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binary Interaction Dominates the Evolution of Massive Stars. Science, 2012, 337, 444-446.	6.0	1,397
2	Rotating massive main-sequence stars. Astronomy and Astrophysics, 2011, 530, A115.	2.1	624
3	THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS. Astrophysical Journal, 2013, 764, 166.	1.6	382
4	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 550, A107.	2.1	368
5	Massive binaries as the source of abundance anomalies in globular clusters. Astronomy and Astrophysics, 2009, 507, L1-L4.	2.1	336
6	The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3545-3553.	1.6	282
7	THE INCIDENCE OF STELLAR MERGERS AND MASS GAINERS AMONG MASSIVE STARS. Astrophysical Journal, 2014, 782, 7.	1.6	251
8	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2011, 530, A108.	2.1	217
9	Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap. Astrophysical Journal, 2019, 887, 53.	1.6	209
10	Rotational mixing in massive binaries. Astronomy and Astrophysics, 2009, 497, 243-253.	2.1	191
11	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 560, A29.	2.1	169
12	An excess of massive stars in the local 30 Doradus starburst. Science, 2018, 359, 69-71.	6.0	164
13	Rotating massive main-sequence stars. Astronomy and Astrophysics, 2011, 530, A116.	2.1	160
14	MERGER RATES OF DOUBLE NEUTRON STARS AND STELLAR ORIGIN BLACK HOLES: THE IMPACT OF INITIAL CONDITIONS ON BINARY EVOLUTION PREDICTIONS. Astrophysical Journal, 2015, 814, 58.	1.6	158
15	LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE <i>HUBBLE SPACE TELESCOPE</i> . I. SURVEY DESCRIPTION. Astronomical Journal, 2015, 149, 51.	1.9	155
16	The R136 star cluster dissected with <i>Hubble Space Telescope</i> /STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters. Monthly Notices of the Royal Astronomical Society, 2016, 458, 624-659.	1.6	150
17	The evolution of runaway stellar collision products. Astronomy and Astrophysics, 2009, 497, 255-264.	2.1	148
18	Pulsational Pair-instability Supernovae in Very Close Binaries. Astrophysical Journal, 2019, 882, 36.	1.6	141

#	Article	IF	CITATIONS
19	Forming short-period Wolf–Rayet X-ray binaries and double black holes through stable mass transfer. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4256-4264.	1.6	134
20	Massive runaway and walkaway stars. Astronomy and Astrophysics, 2019, 624, A66.	2.1	131
21	Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C. Astrophysical Journal, 2017, 835, 140.	1.6	129
22	Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars. Astronomy and Astrophysics, 2018, 615, A78.	2.1	128
23	Constraints from Gravitational-wave Detections of Binary Black Hole Mergers on the ¹² C(α, γ) ¹⁶ O Rate. Astrophysical Journal Letters, 2020, 902, L36.	3.0	122
24	AGES OF YOUNG STAR CLUSTERS, MASSIVE BLUE STRAGGLERS, AND THE UPPER MASS LIMIT OF STARS: ANALYZING AGE-DEPENDENT STELLAR MASS FUNCTIONS. Astrophysical Journal, 2014, 780, 117.	1.6	120
25	Efficiency of mass transfer in massive close binaries. Astronomy and Astrophysics, 2007, 467, 1181-1196.	2.1	120
26	The evolution of rotating very massive stars with LMC composition. Astronomy and Astrophysics, 2015, 573, A71.	2.1	119
27	Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction. Astronomy and Astrophysics, 2017, 601, A29.	2.1	116
28	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 580, A93.	2.1	112
29	Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 ^{â^—} . Astrophysical Journal, 2017, 841, 131.	1.6	107
30	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2017, 598, A84.	2.1	95
31	Binary progenitor models of type IIb supernovae. Astronomy and Astrophysics, 2011, 528, A131.	2.1	94
32	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 550, A109.	2.1	94
33	lonizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity. Astronomy and Astrophysics, 2017, 608, A11.	2.1	93
34	Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars. Astronomy and Astrophysics, 2017, 603, A118.	2.1	89
35	Impact of massive binary star and cosmic evolution on gravitational wave observations I: black hole–neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5028-5063.	1.6	83
36	EVOLUTION OF MASS FUNCTIONS OF COEVAL STARS THROUGH WIND-MASS LOSS AND BINARY INTERACTIONS. Astrophysical Journal, 2015, 805, 20.	1.6	82

#	Article	IF	CITATIONS
37	Polluting the Pair-instability Mass Cap for Binary Black Holes through Super-Eddington Accretion in Isolated Binaries. Astrophysical Journal, 2020, 897, 100.	1.6	77
38	The expansion of stripped-envelope stars: Consequences for supernovae and gravitational-wave progenitors. Astronomy and Astrophysics, 2020, 637, A6.	2.1	76
39	A DOUBLE CLUSTER AT THE CORE OF 30 DORADUS. Astrophysical Journal Letters, 2012, 754, L37.	3.0	68
40	Properties of OB starâ ''black hole systems derived from detailed binary evolution models. Astronomy and Astrophysics, 2020, 638, A39.	2.1	65
41	Electromagnetic Signals Following Stellar-mass Black Hole Mergers. Astrophysical Journal Letters, 2017, 839, L7.	3.0	64
42	The impact of stars stripped in binaries on the integrated spectra of stellar populations. Astronomy and Astrophysics, 2019, 629, A134.	2.1	63
43	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2018, 618, A73.	2.1	62
44	Different to the core: The pre-supernova structures of massive single and binary-stripped stars. Astronomy and Astrophysics, 2021, 656, A58.	2.1	62
45	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 580, A92.	2.1	60
46	Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4333-4341.	1.6	60
47	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 575, A70.	2.1	59
48	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 574, A13.	2.1	58
49	THE VLT-FLAMES TARANTULA SURVEY: THE FASTEST ROTATING O-TYPE STAR AND SHORTEST PERIOD LMC PULSAR—REMNANTS OF A SUPERNOVA DISRUPTED BINARY?. Astrophysical Journal Letters, 2011, 743, L22.	3.0	57
50	The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter. Astrophysical Journal, 2022, 931, 17.	1.6	56
51	Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. Astronomy and Astrophysics, 2020, 640, A56.	2.1	51
52	HUBBLE TARANTULA TREASURY PROJECT: UNRAVELING TARANTULA'S WEB. I. OBSERVATIONAL OVERVIEW AND FIRST RESULTS. Astronomical Journal, 2013, 146, 53.	1.9	47
53	DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING. Astrophysical Journal, 2015, 812, 102.	1.6	47
54	Predicting the Presence of Companions for Stripped-envelope Supernovae: The Case of the Broad-lined Type Ic SN 2002ap. Astrophysical Journal, 2017, 842, 125.	1.6	45

#	Article	IF	CITATIONS
55	Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars. Astronomy and Astrophysics, 2015, 581, A110.	2.1	44
56	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 601, A79.	2.1	42
57	Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system <i>φ</i> Persei. Astronomy and Astrophysics, 2018, 615, A30.	2.1	41
58	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2020, 634, A118.	2.1	40
59	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 600, A82.	2.1	37
60	Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig. Astrophysical Journal, 2018, 856, 83.	1.6	35
61	How stellar rotation shapes the colourâ`'magnitude diagram of the massive intermediate-age star cluster NGC 1846. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2177-2192.	1.6	35
62	Contribution from stars stripped in binaries to cosmic reionization of hydrogen and helium. Astronomy and Astrophysics, 2020, 634, A134.	2.1	34
63	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2011, 530, L10.	2.1	32
64	Detailed models of interacting short-period massive binary stars. Astronomy and Astrophysics, 2022, 659, A98.	2.1	31
65	<i>Gaia</i> DR2 reveals a very massive runaway star ejected from R136. Astronomy and Astrophysics, 2018, 619, A78.	2.1	30
66	Clues on the Origin and Evolution of Massive Contact Binaries: Atmosphere Analysis of VFTS 352. Astrophysical Journal, 2019, 880, 115.	1.6	30
67	The young massive SMC cluster NGC 330 seen by MUSE. Astronomy and Astrophysics, 2020, 634, A51.	2.1	30
68	Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae. Astrophysical Journal Letters, 2019, 876, L29.	3.0	28
69	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2020, 634, A119.	2.1	27
70	Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. Astronomy and Astrophysics, 2021, 645, A6.	2.1	26
71	Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS. Astrophysical Journal, 2018, 855, 133.	1.6	24
72	Binary-stripped Stars as Core-collapse Supernovae Progenitors. Astrophysical Journal Letters, 2021, 916, L5.	3.0	23

#	Article	IF	CITATIONS
73	The young massive SMC cluster NGC 330 seen by MUSE. Astronomy and Astrophysics, 2021, 652, A70.	2.1	23
74	Detailed evolutionary models of massive contact binaries – I. Model grids and synthetic populations for the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5013-5033.	1.6	21
75	Constraining the overcontact phase in massive binary evolution. I. Mixing in V382 Cyg, VFTS 352, and OGLE SMC-SC10 108086. Astronomy and Astrophysics, 0, , .	2.1	18
76	The B-type binaries characterization programme I. Orbital solutions for the 30 Doradus population. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5348-5375.	1.6	18
77	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2021, 650, A147.	2.1	15
78	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 603, A91.	2.1	14
79	LEGWORK: A Python Package for Computing the Evolution and Detectability of Stellar-origin Gravitational-wave Sources with Space-based Detectors. Astrophysical Journal, Supplement Series, 2022, 260, 52.	3.0	14
80	Hubble Space Telescope Astrometry in the Orion Nebula Cluster: Census of Low-mass Runaways. Astronomical Journal, 2020, 159, 272.	1.9	13
81	The Cosmic Carbon Footprint of Massive Stars Stripped in Binary Systems. Astrophysical Journal, 2021, 923, 214.	1.6	13
82	The VLT-FLAMES Tarantula survey. Astronomy and Astrophysics, 2015, 579, A131.	2.1	12
83	Delayed Photons from Binary Evolution Help Reionize the Universe. Astrophysical Journal, 2020, 901, 72.	1.6	12
84	LEGWORK: A python package for computing the evolution and detectability of stellar-origin gravitational-wave sources with space-based detectors. Journal of Open Source Software, 2022, 7, 3998.	2.0	12
85	LEGUS DISCOVERY OF A LIGHT ECHO AROUND SUPERNOVA 2012aw. Astrophysical Journal, 2015, 806, 195.	1.6	11
86	The Candidate Progenitor Companion Star of the Type lb/c SN 2013ge. Astrophysical Journal Letters, 2022, 929, L15.	3.0	11
87	Carbon Abundances in Starburst Galaxies of the Local Universe. Astrophysical Journal, 2017, 847, 107.	1.6	9
88	VLT/X-shooter spectroscopy of massive young stellar objects in the 30 Doradus region of the Large Magellanic Cloud. Astronomy and Astrophysics, 2020, 636, A54.	2.1	7
89	Properties of the Be-type stars in 30 Doradus. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3331-3344.	1.6	7
90	Rotational mixing in close binaries. Proceedings of the International Astronomical Union, 2008, 4, 365-370.	0.0	5

#	Article	IF	CITATIONS
91	Binaries at Low Metallicity: Ranges For Case A, B and C Mass Transfer. AIP Conference Proceedings, 2008, , .	0.3	4
92	Response to Comment on "An excess of massive stars in the local 30 Doradus starburst― Science, 2018, 361, .	6.0	4
93	Formation and fate of low-metallicity stars in TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3602-3615.	1.6	4
94	Reconstructing the EUV Spectrum of Star-forming Regions from Millimeter Recombination Lines of H i, He i, and He ii. Astrophysical Journal, 2020, 903, 29.	1.6	2