Rui Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076993/publications.pdf

Version: 2024-02-01

394421 477307 41 899 19 29 citations h-index g-index papers 42 42 42 614 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	New carbazole based metal-free organic dyes with D-Ï€-A-Ï€-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. Solar Energy, 2017, 153, 600-610.	6.1	87
2	New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (NCSU-10). Journal of Energy Chemistry, 2018, 27, 351-360.	12.9	57
3	Investigation of new carbazole based metal-free dyes as active photo-sensitizers/co-sensitizers for DSSCs. Dyes and Pigments, 2018, 149, 177-187.	3.7	56
4	Molecular design and theoretical investigation of new metal-free heteroaromatic dyes with D-Ï€-A architecture as photosensitizers for DSSC application. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345, 63-73.	3.9	49
5	New di-anchoring A-ï€-D-ï€-A configured organic chromophores for DSSC application: sensitization and co-sensitization studies. Photochemical and Photobiological Sciences, 2018, 17, 302-314.	2.9	47
6	Sulfur-Assisted Five-Cascade Sequential Reactions for the Convenient and Efficient Synthesis of Allyl Thiophen-2-yl Acetates, Propionates, and Ketones. Organic Letters, 2010, 12, 356-359.	4.6	45
7	Synthesis and photovoltaic performance of a novel asymmetric dual-channel co-sensitizer for dye-sensitized solar cell beyond 10% efficiency. Dyes and Pigments, 2017, 141, 112-120.	3.7	38
8	From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells. Electrochimica Acta, 2016, 198, 10-21.	5.2	36
9	New indole based co-sensitizers for dye sensitized solar cells exceeding 10% efficiency. RSC Advances, 2016, 6, 30205-30216.	3.6	34
10	Improvement in performance of N3 sensitized DSSCs with structurally simple aniline based organic co-sensitizers. Solar Energy, 2018, 174, 999-1007.	6.1	28
11	Molecular engineering and synthesis of novel metal-free organic sensitizers with D-Ï€-A-Ï€-A architecture for DSSC applications: The effect of the anchoring group. Dyes and Pigments, 2018, 158, 121-130.	3.7	28
12	Novel metal-free organic dyes constructed with the D-D A-Ï€-A motif: Sensitization and co-sensitization study. Solar Energy, 2019, 194, 400-414.	6.1	28
13	Highly efficient carbazole based co-sensitizers carrying electron deficient barbituric acid for NCSU-10 sensitized DSSCs. Solar Energy, 2018, 169, 386-391.	6.1	27
14	Co-sensitization of Ru(<scp>ii</scp>) complex with terthiophene-based D–π–π–A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance. New Journal of Chemistry, 2018, 42, 11430-11437.	2.8	25
15	Structural Studies on 4,5â€Disubstituted 2â€Aminoimidazoleâ€Based Biofilm Modulators that Suppress Bacterial Resistance to βâ€Lactams. ChemMedChem, 2012, 7, 2030-2039.	3.2	24
16	Structurally simple D–A-type organic sensitizers for dye-sensitized solar cells: effect of anchoring moieties on the cell performance. Journal of the Iranian Chemical Society, 2017, 14, 2457-2466.	2.2	23
17	Effect of terthiophene spacer position in Ru(II) bipyridyl complexes on the photocurrent and photovoltage for high efficiency dye-sensitized solar cells. Dyes and Pigments, 2018, 156, 348-356.	3.7	21
18	Structural studies and photovoltaic investigation of indolo[2,3- <i>b</i>) quinoxaline-based sensitizers/co-sensitizers achieving highly efficient DSSCs. New Journal of Chemistry, 2020, 44, 2797-2812.	2.8	20

#	Article	IF	CITATIONS
19	Enhancing photovoltaic performance of DSSCs sensitized with Ru-II complexes by D–π–A configured carbazole based co-sensitizers. New Journal of Chemistry, 2018, 42, 9443-9448.	2.8	19
20	A Comparative Study on Two RullComplexes with Thiophene-Based Ancillary Ligands for High-Efficiency Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 3690-3697.	2.0	18
21	Three-component one-pot reaction for molecular engineering of novel cost-effective highly rigid quinoxaline-based photosensitizers for highly efficient DSSCs application: Remarkable photovoltage. Dyes and Pigments, 2019, 171, 107683.	3.7	17
22	Co-sensitization of the HD-2 complex with low-cost cyanoacetanilides for highly efficient DSSCs. Photochemical and Photobiological Sciences, 2020, 19, 281-288.	2.9	17
23	New cyanoacetanilides based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (HD-2). Journal of Materials Science: Materials in Electronics, 2020, 31, 7981-7990.	2.2	16
24	Improved photovoltaic performances of Ru (II) complex sensitized DSSCs by co-sensitization of carbazole based chromophores. Inorganic Chemistry Communication, 2017, 86, 241-245.	3.9	15
25	Low-cost Schiff bases chromophores as efficient co-sensitizers for MH-13 in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 5081-5091.	2.2	15
26	Structure-property relationships: "Double-tail versus double-flap―ruthenium complex structures for high efficiency dye-sensitized solar cells. Solar Energy, 2019, 177, 724-736.	6.1	15
27	Highly efficient (N-benzothiazolyl)-cyanoacetamide based co-sensitizers for high efficiency dye-sensitized solar cells. Optik, 2022, 249, 168274.	2.9	14
28	Asymmetric Dual Anchoring Sensitizers/Cosensitizers for Dye Sensitized Solar Cell Application: An Insight into Various Fundamental Processes inside the Cell. Journal of Physical Chemistry C, 2019, 123, 24383-24395.	3.1	13
29	Synthesis, Characterization and Performance Studies of a New Metal-Free Organic Sensitizer for DSSC application. Materials Today: Proceedings, 2018, 5, 3150-3157.	1.8	12
30	Tailoring dual-channel anchorable organic sensitizers with indolo[2,3-b]quinoxaline moieties: Correlation between structure and DSSC performance. Solar Energy, 2020, 206, 443-454.	6.1	11
31	Effect of fluoro-substituted acceptor-based ancillary ligands on the photocurrent and photovoltage in dye-sensitized solar cells. Solar Energy, 2020, 199, 74-81.	6.1	10
32	Influence of brominated-TPA-stilbazole based ancillary ligand on the photocurrent and photovoltage in dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 347-353.	3.7	9
33	Investigations into structure-property relationships of novel Ru(II) dyes with N,Nâ \in 2-Diethyl group in ancillary ligand for dye-sensitized solar cells. Dyes and Pigments, 2019, 171, 107754.	3.7	8
34	Deformation characteristics of droplet generated by Rayleigh jet breakup. AIP Advances, 2021, 11, .	1.3	4
35	Design Method of Bearingless Permanent Magnet Slice Motor for Maglev Centrifugal Pump Based on Performance Metric Cluster. Actuators, 2021, 10, 153.	2.3	4
36	The optimization of bellows convolutions in bellows pump for better stress distribution. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110641.	2.1	3

#	Article	IF	CITATIONS
37	Wetting transition of the confined receding meniscus with tailing bead formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127316.	4.7	2
38	Timing jitter of monodisperse droplets generated by capillary jet breakup. Physics of Fluids, 2022, 34, 042107.	4.0	2
39	Molecular engineering of ruthenium-based photosensitizers with superior photovoltaic performance in DSSCs: novel N-alkyl 2-phenylindole-based ancillary ligands. New Journal of Chemistry, 2022, 46, 2739-2746.	2.8	1
40	Calculation of field and force of Halbach arrays: Improved magnetic charge method for irregular magnetized magnets. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 11136-11149.	2.1	1
41	Modelling and Stability Analysis for a Magnetically Levitated Slice Motor (MLSM) with Gyroscopic Effect and Non-Collocated Structure Based on the Extended Inverse Nyquist Stability Criterion. Machines, 2021, 9, 201.	2.2	0