
Tomas Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 2004, 104, 3723-3750.	23.0	1,061
2	Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 12330-12396.	23.0	839
3	Covalent and Noncovalent Phthalocyanineâ^'Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 2010, 110, 6768-6816.	23.0	748
4	Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chemical Communications, 2007, , 2000-2015.	2.2	730
5	Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chemical Communications, 2010, 46, 7090.	2.2	600
6	Phthalocyanines: From outstanding electronic properties to emerging applications. Chemical Record, 2008, 8, 75-97.	2.9	580
7	Subphthalocyanines:Â Singular Nonplanar Aromatic CompoundsSynthesis, Reactivity, and Physical Properties. Chemical Reviews, 2002, 102, 835-854.	23.0	575
8	Phthalocyanines and related compounds:organic targets for nonlinear optical applications. Journal of Materials Chemistry, 1998, 8, 1671-1683.	6.7	547
9	Molecular Cosensitization for Efficient Panchromatic Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2007, 46, 8358-8362.	7.2	490
10	The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chemical Society Reviews, 2020, 49, 1041-1056.	18.7	486
11	PbS and CdS Quantum Dot‣ensitized Solid‣tate Solar Cells: "Old Concepts, New Results― Advanced Functional Materials, 2009, 19, 2735-2742.	7.8	458
12	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics, 2009, 3, 406-411.	15.6	430
13	Subphthalocyanines, Subporphyrazines, and Subporphyrins: Singular Nonplanar Aromatic Systems. Chemical Reviews, 2014, 114, 2192-2277.	23.0	410
14	Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 2017, 46, 4464-4500.	18.7	356
15	Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Advanced Materials, 2003, 15, 19-32.	11.1	326
16	Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. Journal of the American Chemical Society, 2008, 130, 2906-2907.	6.6	311
17	Influence of Peripheral Substitution on the Magnetic Behavior of Singleâ€Ion Magnets Based on Homo― and Heteroleptic Tb ^{III} Bis(phthalocyaninate). Chemistry - A European Journal, 2013, 19, 1457-1465.	1.7	311
18	Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via "Click Chemistry― Journal of the American Chemical Society, 2008, 130, 11503-11509.	6.6	308

#	Article	IF	CITATIONS
19	Towards artificial photosynthesis: Supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles. Coordination Chemistry Reviews, 2012, 256, 2453-2477.	9.5	305
20	Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines. Journal of the American Chemical Society, 1998, 120, 12808-12817.	6.6	276
21	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
22	Single-Wall Carbon Nanotubes Bearing Covalently Linked Phthalocyanines â^ Photoinduced Electron Transfer. Journal of the American Chemical Society, 2007, 129, 5061-5068.	6.6	255
23	From Subphthalocyanines to Subporphyrins. Angewandte Chemie - International Edition, 2006, 45, 2834-2837.	7.2	230
24	Modulating the electronic properties of porphyrinoids: a voyage from the violet to the infrared regions of the electromagnetic spectrum. Organic and Biomolecular Chemistry, 2008, 6, 1877.	1.5	223
25	Subphthalocyanines:Â Tuneable Molecular Scaffolds for Intramolecular Electron and Energy Transfer Processes. Journal of the American Chemical Society, 2004, 126, 6301-6313.	6.6	219
26	Recent Advances in Phthalocyanineâ€Based Sensitizers for Dye‣ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 6475-6489.	1.2	211
27	Long-lived photoinduced charge separation for solar cell applications in phthalocyanine–fulleropyrrolidine dyad thin filmsElectronic supplementary information (ESI) available: plots of the refractive index, extinction coefficient and dielectric function of Pc-C60. See http://www.rsc.org/suppdata/im/b2/b212621d/. lournal of Materials Chemistry. 2003. 13, 700-704.	6.7	210
28	Effect of Coadsorbent on the Photovoltaic Performance of Zinc Pthalocyanine-Sensitized Solar Cells. Langmuir, 2008, 24, 5636-5640.	1.6	199
29	Carboxyethynyl Anchoring Ligands: A Means to Improving the Efficiency of Phthalocyanine ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 4375-4378.	7.2	176
30	Stabilization of Charge-Separated States in Phthalocyanineâ^'Fullerene Ensembles through Supramolecular Donorâ^'Acceptor Interactions. Journal of the American Chemical Society, 2006, 128, 4112-4118.	6.6	174
31	Donorâ^ Acceptor Phthalocyanine Nanoaggregates. Journal of the American Chemical Society, 2003, 125, 12300-12308.	6.6	170
32	New generation solar cells: concepts, trends and perspectives. Chemical Communications, 2015, 51, 3957-3972.	2.2	170
33	Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chemical Society Reviews, 2018, 47, 7369-7400.	18.7	168
34	Phthalocyanines and Phthalocyanine Analogues: The Quest for Applicable Optical Properties. Monatshefte Für Chemie, 2001, 132, 3-11.	0.9	167
35	Structure–Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dyeâ€ S ensitized Solar Cells. Chemistry - A European Journal, 2009, 15, 5130-5137.	1.7	167
36	A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins. Chemical Society Reviews, 2013, 42, 8049.	18.7	167

#	Article	IF	CITATIONS
37	Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 2019, 48, 2738-2766.	18.7	165
38	The phthalocyanine approach to second harmonic generation. Advanced Materials, 1997, 9, 265-269.	11.1	160
39	Benefits, Problems, and Solutions of Silver Nanowire Transparent Conductive Electrodes in Indium Tin Oxide (ITO)â€Free Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2002536.	10.2	151
40	Perfluorinated Subphthalocyanine as a New Acceptor Material in a Smallâ€Molecule Bilayer Organic Solar Cell. Advanced Functional Materials, 2009, 19, 3435-3439.	7.8	147
41	Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 8991-8997.	6.6	147
42	Subphthalocyanines:Â Novel Targets for Remarkable Second-Order Optical Nonlinearities. Journal of the American Chemical Society, 1996, 118, 2746-2747.	6.6	146
43	State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2films. Chemical Communications, 2004, , 2112-2113.	2.2	146
44	Supramolecular Bis(rutheniumphthalocyanine)â^Perylenediimide Ensembles:Â Simple Complexation as a Powerful Tool toward Long-Lived Radical Ion Pair States. Journal of the American Chemical Society, 2006, 128, 15145-15154.	6.6	146
45	Chiral Self-Discrimination in a M3L2Subphthalocyanine Cage. Journal of the American Chemical Society, 2002, 124, 14522-14523.	6.6	145
46	Nanoscale Organization of a Phthalocyanineâ^'Fullerene System:  Remarkable Stabilization of Charges in Photoactive 1-D Nanotubules. Journal of the American Chemical Society, 2005, 127, 5811-5813.	6.6	145
47	Sc ₃ N@C ₈₀ â€Ferrocene Electronâ€Donor/Acceptor Conjugates as Promising Materials for Photovoltaic Applications. Angewandte Chemie - International Edition, 2008, 47, 4173-4176.	7.2	141
48	Nanochannels for supramolecular organization of luminescent guests. Journal of Materials Chemistry, 2009, 19, 8040.	6.7	139
49	Metallophthalocyanines:  Versatile Electron-Donating Building Blocks for Fullerene Dyads. Journal of Physical Chemistry B, 2004, 108, 18485-18494.	1.2	137
50	Hemiporphyrazines as Targets for the Preparation of Molecular Materials:  Synthesis and Physical Properties. Chemical Reviews, 1998, 98, 563-576.	23.0	132
51	Phthalocyanineâ^'Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. Journal of the American Chemical Society, 2010, 132, 16202-16211.	6.6	131
52	Highly Efficient Synthesis of Chloro- and Phenoxy-Substituted Subphthalocyanines. European Journal of Organic Chemistry, 2003, 2003, 2547-2551.	1.2	130
53	A Highly Sensitive Hybrid Colorimetric and Fluorometric Molecular Probe for Cyanide Sensing Based on a Subphthalocyanine Dye. Advanced Functional Materials, 2006, 16, 1166-1170.	7.8	129
54	Reversible zinc phthalocyanine fullerene ensembles. Chemical Communications, 2002, , 2774-2775.	2.2	125

#	Article	IF	CITATIONS
55	Slow Electron Injection on Ruâ^'Phthalocyanine Sensitized TiO2. Journal of the American Chemical Society, 2007, 129, 9250-9251.	6.6	123
56	Encapsulation of Phthalocyanine Supramolecular Stacks into Virus-like Particles. Journal of the American Chemical Society, 2011, 133, 6878-6881.	6.6	122
57	Towards Tunable Graphene/Phthalocyanine–PPV Hybrid Systems. Angewandte Chemie - International Edition, 2011, 50, 3561-3565.	7.2	122
58	Triflate‣ubphthalocyanines: Versatile, Reactive Intermediates for Axial Functionalization at the Boron Atom. Angewandte Chemie - International Edition, 2011, 50, 3506-3509.	7.2	122
59	Phthalocyanines and Phthalocyanine Analogues: The Quest for Applicable Optical Properties. , 2001, , 3-11.		121
60	Third-Order Nonlinear Optical Properties of Soluble Octasubstituted Metallophthalocyanines. The Journal of Physical Chemistry, 1994, 98, 8761-8764.	2.9	120
61	Synthesis and Liquid-Crystal Behavior of Metal-Free and Metal-Containing Phthalocyanines Substituted with Long-Chain Amide Groups. Chemistry of Materials, 1996, 8, 1061-1066.	3.2	120
62	A Tightly Coupled Bis(zinc(II) phthalocyanine)â^'Perylenediimide Ensemble To Yield Long-Lived Radical Ion Pair Statesâ€. Organic Letters, 2007, 9, 2481-2484.	2.4	120
63	Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donorâ^'Acceptor Conjugates. Journal of the American Chemical Society, 2009, 131, 7727-7734.	6.6	120
64	Functionalized Dendritic Oligothiophenes: Ruthenium Phthalocyanine Complexes and Their Application in Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009, 131, 8669-8676.	6.6	119
65	Synthesis of Novel Unsymmetrically Substituted Push-Pull Phthalocyanines. Journal of Organic Chemistry, 1996, 61, 8591-8597.	1.7	116
66	Phthalocyanines: The Need for Selective Synthetic Approaches. European Journal of Organic Chemistry, 2000, 2000, 2821-2830.	1.2	116
67	Photoinduced Charge-Transfer States in Subphthalocyanineâ^'Ferrocene Dyads. Journal of the American Chemical Society, 2006, 128, 10680-10681.	6.6	116
68	Phthalocyanine–Nanocarbon Ensembles: From Discrete Molecular and Supramolecular Systems to Hybrid Nanomaterials. Accounts of Chemical Research, 2015, 48, 900-910.	7.6	116
69	Synthesis and photophysics of a porphyrin–fullerene dyad assembled through Watson–Crick hydrogen bonding. Chemical Communications, 2005, , 1892-1894.	2.2	114
70	Synthesis and Electrochemical Properties of Phthalocyanine–Fullerene Hybrids. Chemistry - A European Journal, 2000, 6, 3600-3607.	1.7	114
71	Synthesis of Alkynyl-Linked Phthalocyanine Dyads: Push-Pull Homo- and Heterodimetallic Bisphthalocyaninato Complexes. Chemistry - A European Journal, 1999, 5, 2004-2013.	1.7	112
72	Tuning Photoinduced Energy- and Electron-Transfer Events in Subphthalocyanine-Phthalocyanine Dyads. Chemistry - A European Journal, 2005, 11, 3881-3893.	1.7	112

#	Article	lF	CITATIONS
73	A Panchromatic Supramolecular Fullereneâ€Based Donor–Acceptor Assembly Derived from a Peripherally Substituted Bodipy–Zinc Phthalocyanine Dyad. Chemistry - A European Journal, 2010, 16, 1929-1940.	1.7	110
74	A 4% Efficient Organic Solar Cell Using a Fluorinated Fused Subphthalocyanine Dimer as an Electron Acceptor. Advanced Energy Materials, 2011, 1, 565-568.	10.2	110
75	Charge-transfer states in strongly coupled phthalocyanine fullerene ensembles. Chemical Communications, 2002, , 2056-2057.	2.2	109
76	Alkynyl substituted phthalocyanine derivatives as targets for optical limiting. Journal of Materials Chemistry, 2003, 13, 749-753.	6.7	108
77	Inclusion of C60fullerene in a M3L2subphthalocyanine cage. Chemical Communications, 2004, , 1298-1299.	2.2	107
78	Synthesis, Characterization, and Photoinduced Electron Transfer Processes of Orthogonal Ruthenium Phthalocyanineâ^'Fullerene Assemblies. Journal of the American Chemical Society, 2009, 131, 10484-10496.	6.6	105
79	The Role of the Axial Substituent in Subphthalocyanine Acceptors for Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 148-152.	7.2	105
80	A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties. Nanotechnology, 2003, 14, 765-771.	1.3	100
81	Phthalocyanineâ^'Azacrownâ^'Fullerene Multicomponent System:Â Synthesis, Photoinduced Processes, and Electrochemistry#. Organic Letters, 1999, 1, 1807-1810.	2.4	99
82	Structural Modulation of the Dipolarâ^'Octupolar Contributions to the NLO Response in Subphthalocyanines. Journal of Physical Chemistry B, 2005, 109, 3800-3806.	1.2	98
83	Control Over Charge Separation in Phthalocyanineâ ^{~,} Anthraquinone Conjugates as a Function of the Aggregation Status. Journal of the American Chemical Society, 2006, 128, 12674-12684.	6.6	97
84	High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 3077-3083.	4.5	97
85	Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. Energy and Environmental Science, 2011, 4, 189-194.	15.6	97
86	Metal Nitride Cluster Fullerene M ₃ N@C ₈₀ (M=Y, Sc) Based Dyads: Synthesis, and Electrochemical, Theoretical and Photophysical Studies. Chemistry - A European Journal, 2009, 15, 864-877.	1.7	96
87	Synthesis, Separation, and Characterization of the Topoisomers of Fused Bicyclic Subphthalocyanine Dimers. Angewandte Chemie - International Edition, 2002, 41, 2561-2565.	7.2	95
88	Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. Journal of Materials Chemistry, 2009, 19, 5016.	6.7	95
89	Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chemical Science, 2011, 2, 1145.	3.7	95
90	Self-Assembly, Host–Guest Chemistry, and Photophysical Properties of Subphthalocyanine-Based Metallosupramolecular Capsules. Journal of the American Chemical Society, 2013, 135, 10503-10511.	6.6	95

#	Article	IF	CITATIONS
91	Synthesis of Novel Pushâ^'Pull Unsymmetrically Substituted Alkynyl Phthalocyanines. Journal of Organic Chemistry, 2000, 65, 2733-2739.	1.7	93
92	Guanosine and fullerene derived de-aggregation of a new phthalocyanine-linked cytidine derivative. Tetrahedron, 2006, 62, 2123-2131.	1.0	93
93	[1,2,3,4-Tetrakis(α/β-d-galactopyranos-6-yl)phthalocyaninato]zinc(II): a water-soluble phthalocyanine. Tetrahedron Letters, 2006, 47, 9177-9180.	0.7	93
94	Synthesis, Characterization, Molecular Structure and Theoretical Studies of Axially Fluoro‣ubstituted Subazaporphyrins. Chemistry - A European Journal, 2008, 14, 1342-1350.	1.7	93
95	Electron-Donating Behavior of Few-Layer Graphene in Covalent Ensembles with Electron-Accepting Phthalocyanines. Journal of the American Chemical Society, 2014, 136, 4593-4598.	6.6	91
96	Linking Photo―and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie - International Edition, 2012, 51, 6421-6425.	7.2	90
97	Molecularly Engineered Phthalocyanines as Holeâ€Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5%. Advanced Energy Materials, 2017, 7, 1601733.	10.2	90
98	Subphthalocyanines as narrow band red-light emitting materials. Tetrahedron Letters, 2007, 48, 4657-4660.	0.7	89
99	Phthalocyanines and Subphthalocyanines: Perfect Partners for Fullerenes and Carbon Nanotubes in Molecular Photovoltaics. Advanced Energy Materials, 2017, 7, 1601700.	10.2	88
100	Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chemical Communications, 2007, , 2950.	2.2	86
101	Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups. Angewandte Chemie - International Edition, 2012, 51, 1895-1898.	7.2	86
102	Subphthalocyanine enantiomers: first resolution of a C3 aromatic compound by HPLC. Tetrahedron Letters, 2000, 41, 6361-6365.	0.7	85
103	Modulating Electronic Interactions between Closely Spaced Complementary π Surfaces with Different Outcomes: Regio―and Diastereomerically Pure Subphthalocyanine–C ₆₀ Tris Adducts. Angewandte Chemie - International Edition, 2009, 48, 8032-8036.	7.2	85
104	Copper-Mediated Synthesis of Phthalocyanino-Fused Dehydro[12]- and [18]annulenes. Journal of Organic Chemistry, 2000, 65, 6841-6846.	1.7	83
105	Non-aggregated Zn(<scp>ii</scp>)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.	1.6	83
106	A supramolecular approach for the formation of fullerene–phthalocyanine dyads. Journal of Materials Chemistry, 2002, 12, 2095-2099.	6.7	82
107	Immobilizing Water-Soluble Dendritic Electron Donors and Electron Acceptors—Phthalocyanines and Perylenediimides—onto Single Wall Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 6392-6401.	6.6	82
108	Energy Transfer Processes in Novel Subphthalocyanineâ^'Fullerene Ensembles. Organic Letters, 2002, 4, 335-338.	2.4	79

#	Article	IF	CITATIONS
109	Photophysical characterization of a cytidine–guanosine tethered phthalocyanine–fullerene dyad. Chemical Communications, 2007, , 292-294.	2.2	78
110	Activating Multistep Charge-Transfer Processes in Fullereneâ^'Subphthalocyanineâ^'Ferrocene Molecular Hybrids as a Function of Ï€â~'Ï€ Orbital Overlap. Journal of the American Chemical Society, 2010, 132, 16488-16500.	6.6	78
111	Trapping fullerenes with jellyfish-like subphthalocyanines. Chemical Science, 2013, 4, 1338.	3.7	75
112	Decreased Recombination Through the Use of a Nonâ€Fullerene Acceptor in a 6.4% Efficient Organic Planar Heterojunction Solar Cell. Advanced Energy Materials, 2014, 4, 1301413.	10.2	75
113	Pushâ^Pull Phthalocyanines:Â A Hammett Correlation between the Cubic Hyperpolarizability and the Donorâ^Acceptor Character of the Substituents. Journal of Physical Chemistry A, 1997, 101, 9773-9777.	1.1	74
114	Synthesis and Photoinduced Electronâ€Transfer Properties of Phthalocyanine–[60]Fullerene Conjugates. Chemistry - A European Journal, 2008, 14, 3765-3775.	1.7	74
115	Liquid crystalline phthalocyanine–fullerene dyads. Journal of Materials Chemistry, 2011, 21, 1531-1536.	6.7	74
116	Subphthalocyanines Axially Substituted with a Tetracyanobuta-1,3-diene–Aniline Moiety: Synthesis, Structure, and Physicochemical Properties. Journal of the American Chemical Society, 2017, 139, 5520-5529.	6.6	73
117	Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Nearâ€Infrared Dyeâ€6ensitized Solar Cells. Advanced Energy Materials, 2021, 11, 2101598.	10.2	73
118	Highly Conductive Supramolecular Nanostructures of a Covalently Linked Phthalocyanine–C ₆₀ Fullerene Conjugate. Angewandte Chemie - International Edition, 2008, 47, 2026-2031.	7.2	72
119	Hierarchical Organization of Organic Dyes and Protein Cages into Photoactive Crystals. ACS Nano, 2016, 10, 1565-1571.	7.3	72
120	Synthesis and photophysical characterization of a titanium(IV) phthalocyanine–C60 supramolecular dyad. Tetrahedron, 2006, 62, 2097-2101.	1.0	71
121	Functional Phthalocyanines: Synthesis, Nanostructuration, and Electro-Optical Applications. Structure and Bonding, 2010, , 1-44.	1.0	71
122	Synthesis, Characterization, and Properties of Subporphyrazines: A New Class of Nonplanar, Aromatic Macrocycles with Absorption in the Green Region. Chemistry - A European Journal, 2005, 11, 354-360.	1.7	70
123	Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17166-17170.	1.5	70
124	Screening Electronic Communication through <i>orthoâ€</i> , <i>metaâ€</i> and <i>paraâ€</i> Substituted Linkers Separating Subphthalocyanines and C ₆₀ . Chemistry - A European Journal, 2008, 14, 7670-7679.	1.7	69
125	Self-Organization of Phthalocyanineâ^'[60]Fullerene Dyads in Liquid Crystals. Journal of Organic Chemistry, 2008, 73, 1475-1480.	1.7	68
126	Accelerating charge transfer in a triphenylamine–subphthalocyanine donor–acceptor system. Chemical Communications, 2008, , 1759.	2.2	68

#	Article	IF	CITATIONS
127	Synthesis of water-soluble phthalocyanines bearing four or eight d-galactose units. Carbohydrate Research, 2009, 344, 507-510.	1.1	68
128	Co-sensitized DSCs: dye selection criteria for optimized device Vocand efficiency. Journal of Materials Chemistry, 2011, 21, 1693-1696.	6.7	68
129	Photoinduced Electron Transfer in a New Bis(C60)â^'Phthalocyanine Triad. Organic Letters, 2006, 8, 5187-5190.	2.4	67
130	Phthalocyanineâ^'Carbon Nanostructure Materials Assembled through Supramolecular Interactions. Journal of Physical Chemistry Letters, 2011, 2, 905-913.	2.1	67
131	Strength Enhancement of Nanostructured Organogels through Inclusion of Phthalocyanineâ€Containing Complementary Organogelator Structures and In Situ Crossâ€Linking by Click Chemistry. Chemistry - A European Journal, 2008, 14, 9261-9273.	1.7	64
132	Synthesis of novel unsymmetrical monoaminated phthalocyanines. Tetrahedron Letters, 1995, 36, 8501-8504.	0.7	63
133	Nonâ€Centrosymmetric Homochiral Supramolecular Polymers of Tetrahedral Subphthalocyanine Molecules. Angewandte Chemie - International Edition, 2015, 54, 2543-2547.	7.2	63
134	Photophysics and photovoltaic device properties of phthalocyanine–fullerene dyad:conjugated polymer mixtures. Solar Energy Materials and Solar Cells, 2004, 83, 201-209.	3.0	62
135	New Donor–Acceptor Materials Based on Random Polynorbornenes Bearing Pendant Phthalocyanine and Fullerene Units. Chemistry - an Asian Journal, 2006, 1, 148-154.	1.7	61
136	Synthesis of Novel N-Linked Porphyrinâ^'Phthalocyanine Dyads. Organic Letters, 2007, 9, 1557-1560.	2.4	61
137	Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells. Monatshefte Für Chemie, 2011, 142, 699-707.	0.9	61
138	Subphthalocyanines and Subnaphthalocyanines:  Nonlinear Quasi-Planar Octupolar Systems with Permanent Polarity. Journal of Physical Chemistry B, 2002, 106, 13139-13145.	1.2	60
139	[2.2]Paracyclophane: a pseudoconjugated spacer for long-lived electron transfer in phthalocyanine–C60dyads. Journal of Materials Chemistry, 2008, 18, 77-82.	6.7	60
140	The reorganization energy of intermolecular hole hopping between dyes anchored to surfaces. Chemical Science, 2014, 5, 281-290.	3.7	60
141	Novel Homo- and Heterodimetallic Heterobinuclear Phthalocyaninato-Triazolehemiporphyrazinate Complexes. Journal of Organic Chemistry, 1998, 63, 8888-8893.	1.7	59
142	Design and Synthesis of Low-Symmetry Phthalocyanines and Related Systems. , 2003, , 125-160.		59
143	A squaraine–phthalocyanine ensemble: towards molecular panchromatic sensitizers in solar cells. Chemical Communications, 2009, , 4500.	2.2	58
144	Synthesis and characterization of tetraethynylphthalocyanines. Tetrahedron, 1998, 54, 4397-4404.	1.0	57

#	Article	IF	CITATIONS
145	Synthesis and Electrochemical Properties of Homo- and Heterodimetallic Diethynylethene Bisphthalocyaninato Complexes. Journal of Organic Chemistry, 2000, 65, 823-830.	1.7	57
146	Ferroelectric self-assembled molecular materials showing both rectifying and switchable conductivity. Science Advances, 2017, 3, e1701017.	4.7	57
147	Lanthanide(III) Bis(phthalocyaninato)–[60]Fullerene Dyads: Synthesis, Characterization, and Photophysical Properties. Chemistry - A European Journal, 2010, 16, 114-125.	1.7	56
148	Combining Electronâ€Accepting Phthalocyanines and Nanorodâ€like CuO Electrodes for pâ€Type Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 7688-7692.	7.2	55
149	Third Harmonic Generation Spectroscopy of Boron Subphthalocyanine. The Journal of Physical Chemistry, 1995, 99, 14988-14991.	2.9	54
150	Photophysical Properties of Neutral and Cationic Tetrapyridinoporphyrazines. Photochemistry and Photobiology, 2000, 71, 53-59.	1.3	54
151	Intense Groundâ€State Chargeâ€Transfer Interactions in Lowâ€Bandgap, Panchromatic Phthalocyanine–Tetracyanobutaâ€1,3â€diene Conjugates. Angewandte Chemie - International Edition, 2016, 55, 5560-5564.	7.2	54
152	Graphene chemistry. Chemical Society Reviews, 2017, 46, 4385-4386.	18.7	54
153	Synthesis and Electrochemical Properties of Phthalocyanine–Fullerene Hybrids. Chemistry - A European Journal, 2000, 6, 3600-3607.	1.7	53
154	Synthesis and photophysical characterization of a subphthalocyanine fused dimer–C60dyad. Chemical Communications, 2005, , 2113-2115.	2.2	53
155	Synthesis and Photophysical Studies of New Porphyrin-Phthalocyanine Dyads with Hindered Rotation. European Journal of Organic Chemistry, 2006, 2006, 257-267.	1.2	53
156	Stepwise Synthesis of Soluble Substituted Triazolephthalocyanines. Journal of Organic Chemistry, 1995, 60, 1872-1874.	1.7	52
157	Thiadiazole-Derived Expanded Heteroazaporphyrinoids. Organic Letters, 2001, 3, 2153-2156.	2.4	52
158	Generation-Dependent Templated Self-Assembly of Biohybrid Protein Nanoparticles around Photosensitizer Dendrimers. Nano Letters, 2015, 15, 1245-1251.	4.5	52
159	Third-Order Nonlinear Optical Properties of Soluble Metallotriazolylhemiporphyrazines. The Journal of Physical Chemistry, 1994, 98, 4495-4497.	2.9	51
160	Insights into the Aryl-Aryl Exchange between Palladium and Phosphane Ligands in PdII Complexes: Preparation of Phthalocyanine-Containing Phosphonium Salts. Angewandte Chemie - International Edition, 2001, 40, 2895-2898.	7.2	51
161	Novel Pushâ~'Pull Phthalocyanines as Targets for Second-Order Nonlinear Applications. Journal of Physical Chemistry A, 2003, 107, 2110-2117.	1.1	51
162	Incorporating Multiple Energy Relay Dyes in Liquid Dye‧ensitized Solar Cells. ChemPhysChem, 2011, 12, 657-661.	1.0	51

#	Article	IF	CITATIONS
163	Tetrathienoanthracene and Tetrathienylbenzene Derivatives as Holeâ€Transporting Materials for Perovskite Solar Cell. Advanced Energy Materials, 2018, 8, 1800681.	10.2	51
164	Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage. Chemical Science, 2014, 5, 575-581.	3.7	50
165	Tuning the reorganization energy of electron transfer in supramolecular ensembles – metalloporphyrin, oligophenylenevinylenes, and fullerene – and the impact on electron transfer kinetics. Nanoscale, 2015, 7, 2597-2608.	2.8	50
166	Synthesis and Aggregation Properties in Solution of a New Octasubstituted Copper Phthalocyanine: {2,3,9,10,16,17,23,24â€Octakisâ€{(dioctylaminocarbonyl)methoxy]phthalocyaninato}copper(II). Chemische Berichte, 1993, 126, 269-271.	0.2	49
167	Sterically Hindered Phthalocyanines for Dye‣ensitized Solar Cells: Influence of the Distance between the Aromatic Core and the Anchoring Group. ChemPhysChem, 2014, 15, 1033-1036.	1.0	49
168	Strong Two-Photon Absorption in Pushâ^'Pull Phthalocyanines:  Role of Resonance Enhancement and Permanent Dipole Moment Change upon Excitation. Journal of Physical Chemistry C, 2008, 112, 848-859.	1.5	48
169	Synthesis and Photophysical Properties of Fullerene–Phthalocyanine–Porphyrin Triads and Pentads. Chemistry - A European Journal, 2012, 18, 1727-1736.	1.7	48
170	Reversible vapochromic response of polymer films doped with a highly emissive molecular rotor. Journal of Materials Chemistry C, 2014, 2, 9224-9232.	2.7	48
171	Electron-accepting phthalocyanine–pyrene conjugates: towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene. Chemical Science, 2014, 5, 3432-3438.	3.7	48
172	Dual Role of Subphthalocyanine Dyes for Optical Imaging and Therapy of Cancer. Advanced Functional Materials, 2018, 28, 1705938.	7.8	48
173	Second harmonic generation from trinitro-substituted subphthalocyanines films: Evidence of noncentrosymmetric molecular organization. Applied Physics Letters, 1997, 70, 1802-1804.	1.5	47
174	Novel unsymmetrically substituted push–pull phthalocyanines for second-order nonlinear optics. Chemical Physics, 1999, 245, 27-34.	0.9	47
175	Phthalocyanines: Synthesis, Supramolecular Organization, and Physical Properties. , 2001, , 1-111.		47
176	Enhanced Photoresponse in Solid-State Excitonic Solar Cells via Resonant Energy Transfer and Cascaded Charge Transfer from a Secondary Absorber. Nano Letters, 2010, 10, 4981-4988.	4.5	47
177	Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells. Journal of Power Sources, 2011, 196, 596-599.	4.0	47
178	Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines. Nanoscale, 2015, 7, 5674-5682.	2.8	47
179	On‣urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie - International Edition, 2020, 59, 1334-1339.	7.2	47
180	Porphyrin–Phthalocyanine/Pyridylfullerene Supramolecular Assemblies. Chemistry - A European Journal, 2012, 18, 3210-3219.	1.7	46

#	Article	IF	CITATIONS
181	Perspectives in the selective synthesis of phthalocyanines and related compounds. , 2000, 04, 325-330.		45
182	Supramolecular Phthalocyanine Dimers Based on the Secondary Dialkylammonium Cation/Dibenzo-24-crown-8 Recognition Motif. Organic Letters, 2000, 2, 1057-1060.	2.4	45
183	Cyclopentadienylruthenium Ï€â€Complexes of Subphthalocyanines: A "Dropâ€Pin―Approach To Modifying the Electronic Features of Aromatic Macrocycles. Angewandte Chemie - International Edition, 2012, 51, 11337-11342.	7.2	45
184	Glycophthalocyanines as Photosensitizers for Triggering Mitotic Catastrophe and Apoptosis in Cancer Cells. Chemical Research in Toxicology, 2012, 25, 940-951.	1.7	44
185	Light-harvesting with panchromatically absorbing BODIPY–porphyrazine conjugates to power electron transfer in supramolecular donor–acceptor ensembles. Chemical Science, 2013, 4, 3888.	3.7	44
186	Phthalocyanine–Perylenediimide Cart Wheels. Journal of the American Chemical Society, 2016, 138, 12963-12974.	6.6	44
187	Highly Coupled Dyads Based on Phthalocyanineâ^Ruthenium(II) Tris(bipyridine) Complexes. Synthesis and Photoinduced Processes. Journal of Organic Chemistry, 2003, 68, 8635-8642.	1.7	43
188	Immobilizing NIR absorbing azulenocyanines onto single wall carbon nanotubes—from charge transfer to photovoltaics. Chemical Science, 2012, 3, 1472.	3.7	43
189	An exciting twenty-year journey exploring porphyrinoid-based photo- and electro-active systems. Coordination Chemistry Reviews, 2021, 428, 213605.	9.5	43
190	Synthesis and electrical properties of metallotriazolehemiporphyrazines. Synthetic Metals, 1994, 62, 281-285.	2.1	42
191	A colorimetric molecular probe for Cu(ii) ions based on the redox properties of Ru(ii) phthalocyanines. Journal of Materials Chemistry, 2008, 18, 176-181.	6.7	42
192	Scrutinizing the Chemical Nature and Photophysics of an Expanded Hemiporphyrazine: The Special Case of [30]Trithia-2,3,5,10,12,13,15,20,22,23,25,30-dodecaazahexaphyrin. Journal of the American Chemical Society, 2010, 132, 12991-12999.	6.6	42
193	An Insight into the Mechanism of the Axial Ligand Exchange Reaction in Boron Subphthalocyanine Macrocycles. Journal of the American Chemical Society, 2014, 136, 14289-14298.	6.6	42
194	Alkynyl-substituted phthalocyanines: versatile building blocks for molecular materials synthesis. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1083-1100.	0.4	41
195	Subphthalocyanine-Fused Dimers and Trimers:Â Synthetic, Electrochemical, and Theoretical Studies. Journal of Organic Chemistry, 2007, 72, 2967-2977.	1.7	41
196	Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. Journal of the American Chemical Society, 2020, 142, 18109-18117.	6.6	41
197	First phthalocyanine–β-cyclodextrin dyads. Tetrahedron Letters, 2006, 47, 6129-6132.	0.7	40
198	Post-assembly error-checking in subphthalocyanine based M3L2 metallosupramolecular capsules. Chemical Communications, 2008, , 6378.	2.2	40

#	Article	IF	CITATIONS
199	Zn(ii) versus Ru(ii) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors. Energy and Environmental Science, 2010, 3, 1573.	15.6	40
200	Synthesis, Characterization, and Photoinduced Energy and Electron Transfer in a Supramolecular Tetrakis (Ruthenium(II) Phthalocyanine) Perylenediimide Pentad. Chemistry - A European Journal, 2011, 17, 5024-5032.	1.7	40
201	Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15565-15571.	3.3	39
202	Bidirectional Electron Transfer Capability in Phthalocyanine–Sc ₃ N@ <i>I</i> _{<i>h</i>} –C ₈₀ Complexes. Journal of the American Chemical Society, 2015, 137, 12914-12922.	6.6	39
203	Taming C60fullerene: tuning intramolecular photoinduced electron transfer process with subphthalocyanines. Chemical Science, 2015, 6, 4141-4147.	3.7	39
204	Effect of the Metal on the Organization of Tetraamidometallophthalocyanines in Langmuirâ^'Blodgett Films. The Journal of Physical Chemistry, 1996, 100, 16984-16988.	2.9	38
205	Synthesis of Unsymmetrically Substituted Subphthalocyanines. Chemistry - A European Journal, 2000, 6, 2168-2172.	1.7	38
206	Time-Evolution of Poly(3-Hexylthiophene) as an Energy Relay Dye in Dye-Sensitized Solar Cells. Nano Letters, 2012, 12, 634-639.	4.5	38
207	Photoantimicrobial Biohybrids by Supramolecular Immobilization of Cationic Phthalocyanines onto Cellulose Nanocrystals. Chemistry - A European Journal, 2017, 23, 4320-4326.	1.7	38
208	Phthalocyanine analogues. Part 1. Synthesis, spectroscopy, and theoretical study of 8,18-dihydrodibenzo[b,l]-5,7,8,10,15,17,18,20-octa-azaporphyrin and MNDO calculations on its related Hückel heteroannulene. Journal of the Chemical Society Perkin Transactions II, 1989, , 797-803.	0.9	37
209	Triazolephthalocyanines: synthesis, supramolecular organization and physical properties. Coordination Chemistry Reviews, 1999, 190-192, 231-243.	9.5	37
210	Expanded Phthalocyanine Analogues: Synthesis and Characterization of New Triazole-Derived Annulenes Containing Six Heterocyclic Subunits. Chemistry - A European Journal, 2001, 7, 2407-2413.	1.7	37
211	Functionalisation of Phthalocyanines and Subphthalocyanines by Transition-Metal-Catalysed Reactions. Synlett, 2008, 2008, 1-20.	1.0	37
212	Subphthalocyanine-polymethine cyanine conjugate: an all organic panchromatic light harvester that reveals charge transfer. Journal of Materials Chemistry, 2011, 21, 15914.	6.7	37
213	Enantiometric recognition of organic ammonium salts by chiral dialkyl-substituted triazole-18-crown-6-ligands. Journal of Organic Chemistry, 1991, 56, 4193-4196.	1.7	36
214	Synthesis of Highly conjugated boron (III) subphthalocyanines. Tetrahedron Letters, 1997, 38, 5351-5354.	0.7	36
215	Macroscopic and microscopic second-harmonic response from subphthalocyanine thin films. Journal of Applied Physics, 1998, 84, 6507-6512.	1.1	36
216	Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods. Chemical Science, 2013, 4, 2502.	3.7	36

#	Article	IF	CITATIONS
217	Self-assembly triggered by self-assembly: Optically active, paramagnetic micelles encapsulated in protein cage nanoparticles. Journal of Inorganic Biochemistry, 2014, 136, 140-146.	1.5	36
218	Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles: A possible treatment for cardiovascular diseases. European Journal of Pharmaceutical Sciences, 2017, 107, 112-125.	1.9	36
219	Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. Journal of Materials Chemistry B, 2020, 8, 282-289.	2.9	36
220	Stepwise Synthesis of Substituted Dicyanotriazolehemiporphyrazines. A Regioselective Approach to Unsymmetrically Substituted Hemiporphyrazines. Journal of Organic Chemistry, 1996, 61, 6446-6449.	1.7	35
221	Synthesis and Characterization of Highly Conjugated Unsymmetrically Substituted Phthalocyanines. , 1997, 01, 221-226.		35
222	Combination of phthalocyanine and fullerene moieties for optical limiting. Chemical Physics Letters, 2006, 428, 307-311.	1.2	35
223	Tuning and optimizing the intrinsic interactions between phthalocyanine-based PPV oligomers and single-wall carbon nanotubes toward n-type/p-type. Chemical Science, 2011, 2, 652-660.	3.7	35
224	Charge transfer reactions in near IR absorbing small molecule solution processed organic bulk-heterojunction solar. Organic Electronics, 2011, 12, 329-335.	1.4	35
225	From isodesmic to highly cooperative: reverting the supramolecular polymerization mechanism in water by fine monomer design. Chemical Communications, 2018, 54, 4112-4115.	2.2	35
226	A new phthalocyanine–ferrocene conjugated dyad. Journal of Organometallic Chemistry, 2001, 637-639, 751-756.	0.8	34
227	Panchromatic light harvesting in single wall carbon nanotube hybrids—immobilization of porphyrin–phthalocyanine conjugates. Chemical Communications, 2011, 47, 3490.	2.2	34
228	Multifunctional Logic in a Photosensitizer with Tripleâ€Mode Fluorescent and Photodynamic Activity. Chemistry - A European Journal, 2015, 21, 18551-18556.	1.7	34
229	Supramolecular electron transfer-based switching involving pyrrolic macrocycles. A new approach to sensor development?. Chemical Communications, 2015, 51, 7781-7794.	2.2	34
230	Synthesis, optical absorption and photophysical properties of cone-shaped subnaphthalocyanine â€. Perkin Transactions II RSC, 2000, , 1091-1094.	1.1	33
231	Phthalocyanine-Ferrocene Dyads and Triads for Nonlinear Optics. Synthetic Metals, 2003, 137, 1487-1488.	2.1	33
232	Convergent Synthesis of Nearâ€Infrared Absorbing, "Push–Pullâ€; Bisthiopheneâ€5ubstituted, Zinc(II) Phthalocyanines and their Application in Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 6343-6348.	1.7	33
233	Selective carbohydrate–lectin interactions in covalent graphene- and SWCNT-based molecular recognition systems. Chemical Science, 2013, 4, 4035.	3.7	33
234	Tuning the Electronic Properties of Porphyrin Dyes: Effects of <i>meso</i> Substitution on Their Optical and Electrochemical Behaviour. European Journal of Organic Chemistry, 2013, 2013, 2832-2840.	1.2	33

#	Article	IF	CITATIONS
235	A columnar liquid crystal with permanent polar order. Journal of Materials Chemistry C, 2015, 3, 985-989.	2.7	33
236	PEG-containing ruthenium phthalocyanines as photosensitizers for photodynamic therapy: synthesis, characterization and in vitro evaluation. Journal of Materials Chemistry B, 2017, 5, 5862-5869.	2.9	33
237	Supramolecular organization of subphthalocyanines in Langmuir and Langmuir-Blodgett films. Journal of Materials Chemistry, 1999, 9, 1521-1526.	6.7	32
238	Peripheral Functionalization of Subphthalocyanines. European Journal of Organic Chemistry, 2009, 2009, 1871-1879.	1.2	32
239	Synthesis and Nonlinear Optical Properties of Tetrahedral Octupolar Phthalocyanine-Based Systems. Journal of Physical Chemistry B, 2010, 114, 6309-6315.	1.2	32
240	Synthesis and photophysical properties of a hydrogen-bonded phthalocyanine–perylenediimideassembly. Chemical Communications, 2010, 46, 127-129.	2.2	32
241	Broadening the absorption of conjugated polymers by "click―functionalization with phthalocyanines. Dalton Transactions, 2011, 40, 3979.	1.6	32
242	Octacationic and axially di-substituted silicon (IV) phthalocyanines for photodynamic inactivation of bacteria. Dyes and Pigments, 2017, 145, 239-245.	2.0	32
243	Controlling Interfacial Charge Transfer and Fill Factors in CuOâ€based Tandem Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 4056-4060.	7.2	32
244	Dual-Mode Chiral Self-Assembly of Cone-Shaped Subphthalocyanine Aromatics. Journal of the American Chemical Society, 2020, 142, 21017-21031.	6.6	32
245	Novel tribenzhexaazaporphyrins as unsymmetric phthalocyanine analogues. Journal of the Chemical Society Chemical Communications, 1994, , 1525-1526.	2.0	31
246	Langmuir-Blodgett Films of Triazolehemiporphyrazines: Evidence for Molecular Organization. Langmuir, 1995, 11, 2705-2712.	1.6	31
247	Homo- and hetero-dimetallic ethynyl- and butadiynyl-bridged bisphthalocyaninato complexes. Chemical Communications, 1997, , 1175-1176.	2.2	31
248	Synthesis and characterization of homo-dimetallic ferrocendiynyl-bridged bis(ethenylphthalocyaninato complexes). Tetrahedron Letters, 1999, 40, 3263-3266.	0.7	31
249	Synthetic advances in phthalocyanine chemistry. Journal of Porphyrins and Phthalocyanines, 2002, 06, 274-284.	0.4	31
250	Implementing a tripodal relay station in a phthalocyanine–[60]fullerene conjugate. Journal of Materials Chemistry, 2008, 18, 1542.	6.7	31
251	Synthesis of water-soluble subphthalocyanines. Tetrahedron Letters, 2009, 50, 2041-2044.	0.7	31
252	Non-covalent versus covalent donor–acceptor systems based on near-infrared absorbing azulenocyanines and C60 fullerene derivatives. Chemical Communications, 2012, 48, 4058.	2.2	31

#	Article	IF	CITATIONS
253	Peripheral Arylation of Subporphyrazines. Chemistry - A European Journal, 2013, 19, 10353-10359.	1.7	31
254	Intense Groundâ€State Chargeâ€Transfer Interactions in Lowâ€Bandgap, Panchromatic Phthalocyanine–Tetracyanobutaâ€1,3â€diene Conjugates. Angewandte Chemie, 2016, 128, 5650-5654.	1.6	31
255	Optimizing CuO p-type dye-sensitized solar cells by using a comprehensive electrochemical impedance spectroscopic study. Nanoscale, 2016, 8, 17963-17975.	2.8	31
256	Synthesis of Fused Polynuclear Systems Based on Phthalocyanine and Triazolehemiporphyrazine Units. , 1999, 03, 560-568.		30
257	Physicochemical Characterization of Subporphyrazines—Lower Subphthalocyanine Homologues. ChemSusChem, 2009, 2, 330-335.	3.6	30
258	Surface Energy Relay Between Cosensitized Molecules in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 23204-23208.	1.5	30
259	On the Significance of the Anchoring Group in the Design of Antenna Materials Based on Phthalocyanine Stopcocks and Zeoliteâ€L. Chemistry - A European Journal, 2011, 17, 1855-1862.	1.7	30
260	Mediating Reductive Charge Shift Reactions in Electron Transport Chains. Journal of the American Chemical Society, 2017, 139, 17474-17483.	6.6	30
261	Subphthalocyanine–tetracyanobuta-1,3-diene–aniline conjugates: stereoisomerism and photophysical properties. Chemical Science, 2019, 10, 10997-11005.	3.7	30
262	A New Substitution Pattern in Subphthalocyanines: Regioselective Synthesis and Separation of "ortho―Derivatives. European Journal of Organic Chemistry, 2000, 2000, 1603-1607.	1.2	29
263	Polar Switching in a Lyotropic Columnar Nematic Liquid Crystal Made of Bowlâ€ S haped Molecules. Advanced Materials, 2015, 27, 4280-4284.	11.1	29
264	Synthesis of Crowned Triazolephthalocyanines. European Journal of Organic Chemistry, 2000, 2000, 2767-2775.	1.2	28
265	A Fulleropyrrolidine-phthalocyanine dyad for photovoltaic applications. Synthetic Metals, 2003, 137, 1491-1492.	2.1	28
266	Synthesis, characterization and photophysical properties of a melamine-mediated hydrogen-bound phthalocyanine–perylenediimide assembly. Chemical Science, 2013, 4, 1064-1074.	3.7	28
267	Synthesis, photophysical studies and 1O2 generation of carboxylate-terminated zinc phthalocyanine dendrimers. Journal of Inorganic Biochemistry, 2014, 136, 170-176.	1.5	28
268	Synthesis and Liquid-Crystal Behavior of Triazolephthalocyanines. Chemistry of Materials, 2000, 12, 776-781.	3.2	27
269	Noncentrosymmetric Triazolephthalocyanines as Second-Order Nonlinear Optical Materials. Journal of Physical Chemistry B, 2000, 104, 4295-4299.	1.2	27
270	On the mechanism of boron-subphthalocyanine chloride formation. Journal of Porphyrins and Phthalocyanines, 2007, 11, 181-188.	0.4	27

#	Article	IF	CITATIONS
271	Molecular Structure of Chloro-dodecafluorosubphthalocyanato Boron(III) by Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2007, 111, 4542-4550.	1.1	27
272	Subphthalocyanine fused dimers–C60 dyads: synthesis, characterization, and theoretical study. Tetrahedron, 2007, 63, 12396-12404.	1.0	27
273	Distorted fused porphyrin–phthalocyanine conjugates: synthesis and photophysics of supramolecular assembled systems with a pyridylfullerene. Physical Chemistry Chemical Physics, 2011, 13, 11858.	1.3	27
274	Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission. Chemical Communications, 2014, 50, 12955-12958.	2.2	27
275	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1789-1799.	1.7	27
276	Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. European Journal of Medicinal Chemistry, 2020, 187, 111957.	2.6	27
277	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	3.7	27
278	New polythiophenes bearing electron-acceptor phthalocyanine chromophores. Tetrahedron Letters, 2003, 44, 8475-8478.	0.7	26
279	Convex–convex andÂconcave–convex interactions between C60 andÂnon-planar aromatic subphthalocyanine macrocycle inÂboth covalent andÂsupramolecular arrays. Comptes Rendus Chimie, 2006, 9, 1094-1099.	0.2	26
280	Subphthalocyanineâ^'Dehydro[18]annulenes. Organic Letters, 2007, 9, 5381-5384.	2.4	26
281	Carboxy-1,4-phenylenevinylene- and carboxy-2, 6-naphthylene-vinylene unsymmetrical substituted zinc phthalocyanines for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 369-375.	0.4	26
282	Direct Access to Axially Substituted Subphthalocyanines from Trimethylsilyl-Protected Nucleophiles. Organic Letters, 2015, 17, 4722-4725.	2.4	26
283	Tuning intramolecular electron and energy transfer processes in novel conjugates of La ₂ @C ₈₀ and electron accepting subphthalocyanines. Chemical Communications, 2015, 51, 330-333.	2.2	26
284	Regioâ€; Stereoâ€; and Atropselective Synthesis of C ₆₀ Fullerene Bisadducts by Supramolecularâ€Directed Functionalization. Angewandte Chemie - International Edition, 2016, 55, 11020-11025.	7.2	26
285	The Role of the Axial Substituent in Subphthalocyanine Acceptors for Bulkâ€Heterojunction Solar Cells. Angewandte Chemie, 2017, 129, 154-158.	1.6	26
286	Efficient synthesis of alkoxyanthraquinones from fluoroanthraquinones and their preliminary electrochemistry. Journal of Organic Chemistry, 1993, 58, 2009-2012.	1.7	25
287	Synthesis and aggregation properties of novel soluble â€~crowned' metallotriazolehemiporphyrazines. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	25
288	Organization of triazolephthalocyanines in Langmuir–Blodgett films. Journal of Materials Chemistry, 1997, 7, 1741-1746.	6.7	25

#	Article	IF	CITATIONS
289	Synthesis and Liquid-Crystal Behavior of a Novel Class of Disklike Metallomesogens:Â Hexasubstituted Triazolehemiporphyrazines. Chemistry of Materials, 1997, 9, 3017-3022.	3.2	25
290	Tetraamidometallo-phthalocyanines Langmuir-Blodgett Films: Morphology versus central metal effects on NO2 detection. Synthetic Metals, 1999, 102, 1476-1477.	2.1	25
291	A Bis(C ₆₀)–Bis(phthalocyanine) Nanoconjugate: Synthesis and Photoinduced Charge Transfer. ChemSusChem, 2008, 1, 97-102.	3.6	25
292	A Bisfullerene–Bis(dipyrrinato)zinc Complex: Electronic Coupling and Charge Separation in an Easyâ€ŧoâ€Assemble Synthetic System. Chemistry - A European Journal, 2009, 15, 3956-3959.	1.7	25
293	Screening interactions of zinc phthalocyanine–PPV oligomers with single wall carbon nanotubes—a comparative study. Journal of Materials Chemistry, 2011, 21, 8014.	6.7	25
294	Towards enhancing light harvesting—subphthalocyanines as electron acceptors. Chemical Communications, 2012, 48, 4953.	2.2	25
295	Tuning the Stability of Graphene Layers by Phthalocyanineâ€Based oPPV Oligomers Towards Photo―and Redoxactive Materials. Small, 2013, 9, 2348-2357.	5.2	25
296	Subnaphthalocyanines as Electron Acceptors in Polymer Solar Cells: Improving Device Performance by Modifying Peripheral and Axial Substituents. Chemistry - A European Journal, 2018, 24, 6339-6343.	1.7	25
297	Phthalocyanine–Virus Nanofibers as Heterogeneous Catalysts for Continuousâ€Flow Photoâ€Oxidation Processes. Advanced Materials, 2019, 31, e1902582.	11.1	25
298	Bottomâ€up Fabrication and Atomicâ€Scale Characterization of Triply Linked, Laterally Ï€â€Extended Porphyrin Nanotapes**. Angewandte Chemie - International Edition, 2021, 60, 16208-16214.	7.2	25
299	Title is missing!. Angewandte Chemie, 2002, 114, 2673-2677.	1.6	24
300	TDDFT study of the UV-vis spectra of subporphyrazines and subphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1220-1230.	0.4	24
301	Efficient Synthesis of ABAB Functionalized Phthalocyanines. Organic Letters, 2014, 16, 4706-4709.	2.4	24
302	Modern Synthetic Tools Toward the Preparation of Sophisticated Phthalocyanineâ€Based Photoactive Systems. Chemistry - an Asian Journal, 2014, 9, 2676-2707.	1.7	24
303	Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers. Organic and Biomolecular Chemistry, 2017, 15, 9008-9017.	1.5	24
304	Nickel(II) and copper(II) complexes of mixed benzene-triazolehemiporphyrazines. Inorganica Chimica Acta, 1995, 230, 153-157.	1.2	23
305	Strong intramolecular electronic interactions in an anthraquinone bridged bis-ethenylphthalocyaninatozinc(ii) triad. Chemical Communications, 2001, , 399-400.	2.2	23
306	Spectral and kinetic properties of the radical ions of chloroboron(III) subnaphthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 214-219.	2.0	23

#	Article	IF	CITATIONS
307	Thermal stability of boron subphthalocyanines as a function of the axial and peripheral substitution. Journal of Organometallic Chemistry, 2009, 694, 1617-1622.	0.8	23
308	Ultrafast Photoinduced Processes in Subphthalocyanine Electron Donor–Acceptor Conjugates Linked by a Single B–N Bond. Organic Letters, 2012, 14, 5656-5659.	2.4	23
309	Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. Chemical Science, 2012, 3, 1177.	3.7	23
310	Supramolecular Assembly of Multicomponent Photoactive Systems via Cooperatively Coupled Equilibria. Journal of the American Chemical Society, 2013, 135, 19311-19318.	6.6	23
311	Peripherally and Axially Carboxylic Acid Substituted Subphthalocyanines for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 2016-2021.	1.7	23
312	A push–pull unsymmetrical subphthalocyanine dimer. Chemical Science, 2015, 6, 5571-5577.	3.7	23
313	Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. Journal of the American Chemical Society, 2017, 139, 14129-14136.	6.6	23
314	Boosting the singlet oxygen photosensitization abilities of Zn(<scp>ii</scp>) phthalocyanines through functionalization with bulky fluorinated substituents. Organic and Biomolecular Chemistry, 2019, 17, 7448-7454.	1.5	23
315	Synthesis of New Push-Pull Unsymmetrically Substituted Styryl Metallophthalocyanines: Targets for Nonlinear Optics. European Journal of Organic Chemistry, 1999, 1999, 2323-2326.	1.2	22
316	A giant M2L3 metallo-organic helicate based on phthalocyanines as a host for electroactive molecules. Chemical Communications, 2018, 54, 2651-2654.	2.2	22
317	Resistive switching in an organic supramolecular semiconducting ferroelectric. Chemical Communications, 2019, 55, 8828-8831.	2.2	22
318	Phthalocyanine–DNA origami complexes with enhanced stability and optical properties. Chemical Communications, 2020, 56, 7341-7344.	2.2	22
319	Synthesis and different aggregation properties in solution of alkyl- and dialkyl amide surrounded phthalocyanines. Tetrahedron Letters, 1995, 36, 8079-8082.	0.7	21
320	Synthesis and characterization of a benzene-centered, phthalocyanine hexamer. Chemical Communications, 2004, , 2668.	2.2	21
321	Self-Assembled Monolayers of Subphthalocyanines on Gold Substrates. Organic Letters, 2010, 12, 2970-2973.	2.4	21
322	Improving charge injection and charge transport in CuO-based p-type DSSCs – a quick and simple precipitation method for small CuO nanoparticles. Journal of Materials Chemistry C, 2018, 6, 5176-5180.	2.7	21
323	Panchromatic Photosensitizers Based on Push–Pull, Unsymmetrically Substituted Porphyrazines. Chemistry - A European Journal, 2018, 24, 2618-2625.	1.7	21
324	Tuning Intramolecular Förster Resonance Energy Transfer and Activating Intramolecular Singlet Fission. Angewandte Chemie - International Edition, 2018, 57, 16291-16295.	7.2	21

#	Article	IF	CITATIONS
325	Synthesis and Optical Features of Axially and Peripherally Substituted Subporphyrins. A Paradigmatic Example of Charge Transfer versus Exciplex States. Journal of the American Chemical Society, 2020, 142, 7920-7929.	6.6	21
326	Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2021, 12, 502-507.	1.3	21
327	Quninone chemistry. Synthesis of 3â€methoxy[2, 1]benzisoxazoleand 3â€methoxynaphth[2,3â€c]isoxazolequinones. Journal of Heterocyclic Chemistry, 1985, 22, 697-699.	1.4	20
328	Metallotriazolephthalocyanines as potential molecular subunits for the preparation of nonlinear optical active systems. Synthetic Metals, 1995, 71, 2289-2290.	2.1	20
329	In-plane orientation in Langmuir–Blodgett films of triazolephthalocyanines. Journal of the Chemical Society Chemical Communications, 1995, , 1673-1674.	2.0	20
330	Semiconducting Langmuir-Blodgett films of new Triazolephthalocyanines. Synthetic Metals, 1997, 84, 879-880.	2.1	20
331	Synthesis and thermotropic properties of hydroxy and silyloxy axially substituted phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2000, 04, 569-573.	0.4	20
332	Triazoleporphyrazines: A New Class of Intrinsically Unsymmetrical Azaporphyrins. European Journal of Organic Chemistry, 2002, 2002, 2460.	1.2	20
333	Synthesis, Characterisation and Nonlinear Optical Properties of Two-Dimensional Octupolar Systems Based on Phthalocyanine Compounds. European Journal of Organic Chemistry, 2005, 2005, 3911-3915.	1.2	20
334	Synthesis, photophysical and electrochemical characterization of phthalocyanine-based poly(p-phenylenevinylene) oligomers. Dalton Transactions, 2009, , 3955.	1.6	20
335	Well-defined, persistent, chiral phthalocyanine nanoclusters via G-quadruplex assembly. Chemical Communications, 2016, 52, 9446-9449.	2.2	20
336	Emerging Perspectives on Applications of Porphyrinoids for Photodynamic Therapy and Photoinactivation of Microorganisms. Macroheterocycles, 2019, 12, 8-16.	0.9	20
337	Synthesis of 3,5-Biscarbonyl-1H-1,2,4-Triazole Derivatives. Synthesis, 1992, 1992, 398-402.	1.2	19
338	Synthesis of Nickel(II) Triazolenaphthalocyanine and Related Macrocycles. Journal of Organic Chemistry, 2001, 66, 89-93.	1.7	19
339	Controlling charge transfer in fullerene/phthalocyanine electron donor-acceptor conjugates/hybrids. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1034-1039.	0.4	19
340	Microenvironment-switchable singlet oxygen generation by axially-coordinated hydrophilic ruthenium phthalocyanine dendrimers. Physical Chemistry Chemical Physics, 2011, 13, 3385-3393.	1.3	19
341	Subphthalocyanine-based nanocrystals. Chemical Communications, 2011, 47, 9986.	2.2	19
342	Small molecule solar cells based on a series of water-soluble zinc phthalocyanine donors. Chemical Communications, 2012, 48, 6094.	2.2	19

#	Article	IF	CITATIONS
343	Synthesis of unsymmetrical carboxyphthalocyanines by palladium-catalyzed hydroxycarbonylation of iodo-substituted precursors. Organic and Biomolecular Chemistry, 2013, 11, 2237.	1.5	19
344	Noncovalent Functionalization of Thiopyridyl Porphyrins with Ruthenium Phthalocyanines. ChemPlusChem, 2015, 80, 832-838.	1.3	19
345	Effect of Peripheral Substitution on the Performance of Subphthalocyanines in DSSCs. Chemistry - an Asian Journal, 2016, 11, 1223-1231.	1.7	19
346	The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine‣ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 4369-4373.	1.7	19
347	Molecular diabolos: synthesis of subphthalocyanine-based diboranes. Chemical Communications, 2007, , 4104.	2.2	18
348	Novel phthalocyanine-based stopcock for zeolite L. Chemical Communications, 2008, , 1187.	2.2	18
349	Impact of the Anchoring Ligand on Electron Injection and Recombination Dynamics at the Interface of Novel Asymmetric Push–Pull Zinc Phthalocyanines and TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 25397-25404.	1.5	18
350	Assembling a Phthalocyanine and Perylenediimide Donor–Acceptor Hybrid through a Platinum(II) Diacetylide Linker. Chemistry - A European Journal, 2013, 19, 14506-14514.	1.7	18
351	Azulenocyanines immobilized on graphene; on the way to panchromatic absorption and efficient DSSC blocking layers. Nanoscale, 2019, 11, 10709-10715.	2.8	18
352	Second harmonic generation of a series of axially substituted titanium(IV) and gallium(III) tetra-tert-butylphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2003, 07, 291-295.	0.4	17
353	Novel Cobalt (II) Phthalocyanine-Containing Polyimides: Synthesis, Characterization, Thermal and Optical Properties. Macromolecular Rapid Communications, 2006, 27, 1852-1858.	2.0	17
354	Transduction of excited state energy between covalently linked porphyrins and phthalocyanines. Photochemical and Photobiological Sciences, 2010, 9, 1027-1032.	1.6	17
355	Non entrosymmetric Homochiral Supramolecular Polymers of Tetrahedral Subphthalocyanine Molecules. Angewandte Chemie, 2015, 127, 2573-2577.	1.6	17
356	An Unsymmetrical, Push–Pull Porphyrazine for Dyeâ€ S ensitized Solar Cells. ChemPhotoChem, 2017, 1, 164-166.	1.5	17
357	Synthesis, Characterization and Inâ€Vitro Evaluation of Carbohydrateâ€Containing Ruthenium Phthalocyanines as Third Generation Photosensitizers for Photodynamic Therapy. ChemPhotoChem, 2018, 2, 640-654.	1.5	17
358	Triazolate-containing macrocyclic transition-metal complexes derived from bis(3-aminopropyl)amine and 3,5-diacyl-1,2,4-triazoles. Journal of the Chemical Society Dalton Transactions, 1993, , 2595-2599.	1.1	16
359	Synthesis of the First Nonmetalated Triazolephthalocyanine Derivativesâ€. Journal of Organic Chemistry, 2002, 67, 1392-1395.	1.7	16
360	Quaternized Pyridyloxy Phthalocyanines Render Aqueous Electronâ€Donor Carbon Nanotubes as Unprecedented Supramolecular Materials for Energy Conversion. Advanced Functional Materials, 2015, 25, 7418-7427.	7.8	16

#	Article	IF	CITATIONS
361	Photoinduced Energy Transfer in ZnCdSeS Quantum Dot–Phthalocyanines Hybrids. ACS Omega, 2018, 3, 10048-10057.	1.6	16
362	Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2399-2404.	2.5	16
363	A Galactose Dendritic Silicon (IV) Phthalocyanine as a Photosensitizing Agent in Cancer Photodynamic Therapy. ChemPlusChem, 2018, 83, 855-860.	1.3	16
364	Annulative π-extension of BODIPYs made easy <i>via</i> gold(<scp>i</scp>)-catalyzed cycloisomerization. Chemical Science, 2020, 11, 10778-10785.	3.7	16
365	Photoactive preorganized subphthalocyanine-based molecular tweezers for selective complexation of fullerenes. Chemical Science, 2020, 11, 3448-3459.	3.7	16
366	The effect of bulky electron-donating thioether substituents on the performances of phthalocyanine based dye sensitized solar cells. Sustainable Energy and Fuels, 2021, 5, 584-589.	2.5	16
367	Synthesis and Third-harmonic Generation in Thin Films of Tetrapyridinoporphyrazines: Effect of Molecular Aggregation. , 1999, 03, 703-711.		15
368	Gas sensing in spin-coated films of substituted sulfur containing phthalocyanines. Synthetic Metals, 1999, 102, 1462-1463.	2.1	15
369	2-Amino-3,4-diethylpyrrole derivatives: New building blocks for coiled structures. Chemical Communications, 2006, , 2132-2134.	2.2	15
370	Physicochemical characterization of octakis(alkyloxy)-substituted Zn(ii)-phthalocyanines non-covalently incorporated into an organogel and their remarkable morphological effect on the nanoscale-fibers. Chemical Communications, 2007, , 2369-2371.	2.2	15
371	Ordering phthalocyanine–C60 fullerene conjugates on individual carbon nanotubes. Chemical Communications, 2010, 46, 4692.	2.2	15
372	Amphiphilic zinc phthalocyanine dendrimers by the Click Chemistry approach. Journal of Porphyrins and Phthalocyanines, 2011, 15, 364-372.	0.4	15
373	Ti (IV) phthalocyanines for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2013, 17, 814-820.	0.4	15
374	Tautomerism and Atropisomerism in Freeâ€Base (<i>meso</i>)â€Strapped Porphyrins: Static and Dynamic Aspects. Chemistry - A European Journal, 2014, 20, 16337-16349.	1.7	15
375	Ruthenoarenes versus Phenol Derivatives as Axial Linkers for Subporphyrazine Dimers and Trimers. Chemistry - A European Journal, 2014, 20, 6518-6525.	1.7	15
376	Adapting Ruthenium Sensitizers to Cobalt Electrolyte Systems. Journal of Physical Chemistry Letters, 2014, 5, 501-505.	2.1	15
377	Convergent Strategy for the Regioselective Synthesis of Nonaggregated α-Triaryl-β-carboxy Zinc Phthalocyanines. Organic Letters, 2015, 17, 552-555.	2.4	15
378	Tri- and hexaferrocenyl-substituted subphthalocyanines in the quest for the optimum electron donor–acceptor distances. Chemical Communications, 2017, 53, 8525-8528.	2.2	15

#	Article	IF	CITATIONS
379	Synthesis and Aggregation Studies of Functional Binaphthyl-Bridged Chiral Phthalocyanines. Organic Letters, 2019, 21, 8183-8186.	2.4	15
380	Enabling Racemization of Axially Chiral Subphthalocyanineâ€Tetracyanobutadieneâ€Aniline Enantiomers by Triplet State Photogeneration. Angewandte Chemie - International Edition, 2020, 59, 21224-21229.	7.2	15
381	Z-α ₁ -antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. Science Advances, 2022, 8, eabm2094.	4.7	15
382	Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	6.6	15
383	Extraction of chiral ammonium cations and transport through supported liquid membranes mediated by 1,2,4-triazole-containing podands and macrocycles. Tetrahedron Letters, 1994, 35, 7669-7672.	0.7	14
384	Synthesis and Electrochemical Complexation Studies of 1,8-Bis(azacrown ether)anthraquinones. Journal of Organic Chemistry, 1994, 59, 3814-3820.	1.7	14
385	Triazolephthalocyanine versus phthalocyanine nickel(ii) and copper(ii) complexes: a thermogravimetric stability study. Journal of Materials Chemistry, 2000, 10, 2187-2192.	6.7	14
386	Self-sorting among the diastereoisomers of a M3L2 subphthalocyanine capsule. Supramolecular Chemistry, 2009, 21, 44-47.	1.5	14
387	Charge Transfer in Sapphyrinâ ´`Fullerene Hybrids Employing Dendritic Ensembles. Journal of Physical Chemistry B, 2010, 114, 14134-14139.	1.2	14
388	Synthesis and Ultrafast Time Resolved Spectroscopy of Peripherally Functionalized Zinc Phthalocyanine Bearing Oligothienylene-ethynylene Subunits. Journal of Physical Chemistry C, 2013, 117, 20912-20918.	1.5	14
389	Branched and bulky substituted ruthenium sensitizers for dye-sensitized solar cells. Dalton Transactions, 2014, 43, 15085-15091.	1.6	14
390	Pyridyl―and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dye‧ensitized Solar Cells. ChemPlusChem, 2017, 82, 1057-1061.	1.3	14
391	Crosswise Phthalocyanines with Collinear Functionalization: New Paradigmatic Derivatives for Efficient Singlet Oxygen Photosensitization. ChemPlusChem, 2019, 84, 673-679.	1.3	14
392	Light-harvesting porphyrazines to enable intramolecular singlet fission. Nanoscale, 2019, 11, 22286-22292.	2.8	14
393	Spherical and rod shaped mesoporous silica nanoparticles for cancer-targeted and photosensitizer delivery in photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3248-3259.	2.9	14
394	Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
395	Substituted metallotriazolehemiporphyrazines: Synthesis and characterization by FABâ€MS. Liebigs Annalen, 1995, 1995, 495-499.	0.8	13
396	Synthesis and third-order NLO properties in LB films of triazolehemiporphyrazines. Synthetic Metals, 1998, 93, 213-218.	2.1	13

#	Article	IF	CITATIONS
397	Computational study of the geometry and electronic structure of triazolephthalocyanines. Journal of Materials Chemistry, 2002, 12, 1256-1261.	6.7	13
398	Synthesis and electrochemical switching of a dianthraquinone cryptand and related anthraquinone-diazacrown ether oligomers. Tetrahedron, 2002, 58, 961-966.	1.0	13
399	Nanochannels for Supramolecular Organisation of Dyes. Chimia, 2007, 61, 626-630.	0.3	13
400	Synthesis and spectroscopic properties of chiral bornane[2,3-b]pyrazino-fused [30]trithiadodecaazahexaphyrins. Journal of Porphyrins and Phthalocyanines, 2014, 18, 1014-1020.	0.4	13
401	Probing Supramolecular Interactions between a Crown Ether Appended Zinc Phthalocyanine and an Ammonium Group Appended to a C ₆₀ Derivative. Chemistry - A European Journal, 2016, 22, 2051-2059.	1.7	13
402	ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-Ï€-Acceptor Chromophores. ChemistryOpen, 2017, 6, 121-127.	0.9	13
403	Modifying the Semiconductor/Electrolyte Interface in CuO p-Type Dye-Sensitized Solar Cells: Optimization of Iodide/Triiodide-Based Electrolytes. ACS Applied Energy Materials, 2018, 1, 6388-6400.	2.5	13
404	Quadrupolar Cyclopenta[<i>hi</i>]aceanthryleneâ€Based Electron Donorâ€Acceptorâ€Donor Conjugates: Charge Transfer versus Charge Separation. Angewandte Chemie - International Edition, 2019, 58, 14644-14652.	7.2	13
405	Subphthalocyanines as Efficient Photosensitizers with Nanomolar Photodynamic Activity against Cancer Cells. Journal of Medicinal Chemistry, 2021, 64, 17436-17447.	2.9	13
406	Carbamates from Secondary Amines and Alkyl Chlorides under Phase-Transfer Conditions. Synthesis, 1985, 282-285.	1.2	12
407	Protonated amine transport and chiral recognition by 1,2,4-triazole podands and macrocycles. Tetrahedron, 1992, 48, 9545-9552.	1.0	12
408	Synthesis of Optically Active Macrocycles Containing Two 1,2,4-Triazole Subunits. Synthesis, 1994, 1994, 1994, 1091-1095.	1.2	12
409	Iron-and rutheniumtriazolehemiporphyrazines as molecular subunits for the preparation of semiconducting polymers. Synthetic Metals, 1997, 84, 369-370.	2.1	12
410	Third order optical non-linearity of substituted triazolehemiporphyrazines. Synthetic Metals, 2001, 121, 1481-1482.	2.1	12
411	Assembling Phthalocyanine Dimers through a Platinum(II) Acetylide Linker. Chemistry - A European Journal, 2011, 17, 14139-14146.	1.7	12
412	Postfunctionalization of Helical Polyisocyanopeptides with Phthalocyanine Chromophores by "Click Chemistry― ChemPlusChem, 2012, 77, 700-706.	1.3	12
413	Synergy of light harvesting and energy transfer as well as short-range charge shift reactions in multicomponent conjugates. Nanoscale, 2018, 10, 22400-22408.	2.8	12
414	Controlling Intramolecular Förster Resonance Energy Transfer and Singlet Fission in a Subporphyrazine–Pentacene Conjugate by Solvent Polarity. Angewandte Chemie - International Edition, 2021, 60, 1474-1481.	7.2	12

#	Article	IF	CITATIONS
415	Selfâ€Assembled Binaphthylâ€Bridged Amphiphilic AABB Phthalocyanines: Nanostructures for Efficient Antimicrobial Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 4955-4963.	1.7	12
416	Self-assembled Zn phthalocyanine as a robust p-type selective contact in perovskite solar cells. Nanoscale Horizons, 2020, 5, 1415-1419.	4.1	12
417	Quninone chemistry. Synthesis of 3â€dialkylsulfoximido―and 2â€dialkylâ€sulfimidoâ€3â€carbomethoxyâ€1,4â4 and naphthoquinone derivatives. Journal of Heterocyclic Chemistry, 1985, 22, 701-704.	€benzoâ€ 1.4	11
418	Thermal rearrangement of benzisoxazole- and naphthisoxazolequinones in solution and in the solid state. Stereoselective synthesis of Î ³ -cyanomethylidenebutenolides Tetrahedron, 1993, 49, 2261-2274.	1.0	11
419	Macroscopic third order nonlinear optical behavior of metal-containing phthalocyanines bearing alkyl-amido functional groups. Synthetic Metals, 1997, 84, 923-924.	2.1	11
420	Synthesis of diiodo butadiynyl-bridged bisphthalocyaninatozinc(II) complexes. Journal of Inorganic Biochemistry, 2008, 102, 388-394.	1.5	11
421	Flavin Core as Electron Acceptor Component in a Zinc(II)-Phthalocyanine-Based Dyad. Australian Journal of Chemistry, 2008, 61, 256.	0.5	11
422	Charge and energy transfer processes in ruthenium(II) phthalocyanine based electron donor–acceptor materials—implications for solar cell performance. Journal of Materials Chemistry, 2011, 21, 1395-1403.	6.7	11
423	Synthesis of Subphthalocyanines as Probes for the Accessibility of Silica Nanochannels. Organic Letters, 2011, 13, 4918-4921.	2.4	11
424	Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Organic and Biomolecular Chemistry, 2017, 15, 5402-5409.	1.5	11
425	Role of the Bulky Aryloxy Group at the Nonâ€Peripheral Position of Phthalocyanines for Dye Sensitized Solar Cells. ChemPlusChem, 2017, 82, 132-135.	1.3	11
426	One-Pot Synthesis of π-Extended Fluorenone-Fused Subphthalocyanines. Organic Letters, 2019, 21, 2908-2912.	2.4	11
427	On‣urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie, 2020, 132, 1350-1355.	1.6	11
428	Push–Pull Zinc Phthalocyanine Bearing Hexa-Tertiary Substituted Carbazolyl Donor Groups for Dye-Sensitized Solar Cells. Molecules, 2020, 25, 1692.	1.7	11
429	A versatile, divergent route for the synthesis of ABAC tetraazaporphyrins: molecularly engineered, push–pull phthalocyanine-type dyes. Journal of Materials Chemistry C, 2021, 9, 10802-10810.	2.7	11
430	Selfâ€Assembled Porphyrinoids: Oneâ€Component Nanostructured Photomedicines. ChemMedChem, 2021, 16, 2441-2451.	1.6	11
431	Ultrastrong Exciton–Photon Coupling in Broadband Solar Absorbers. Journal of Physical Chemistry Letters, 2021, 12, 10706-10712.	2.1	11
432	On the lead tetraacetate oxidation of 4-amino-1,2,4-triazoles, 1-amino- and 2-amino-1,2,3-triazoles. Monatshefte Für Chemie, 1988, 119-119, 1041-1045.	0.9	10

#	Article	IF	CITATIONS
433	Preparation and enantiomeric purity determination of new chiral C2 building blocks based on the 4-amino-1,2,4-triazole unit. Tetrahedron: Asymmetry, 1994, 5, 1291-1296.	1.8	10
434	Synthetic applications of functionalized phosphoranylideneamino-1,4-benzoquinones: Preparation of oxazolo[5,4-b]phenoxazine, 4H-[3,1]benzoxazino-5,8-quinone and benzoxazole derivatives. Tetrahedron, 1996, 52, 6781-6794.	1.0	10
435	Triazolehemiporphyrazines as bridging paths in push–pull phthalocyanines for quadratic nonlinear optics. Synthetic Metals, 2003, 139, 95-98.	2.1	10
436	Charge separation in a covalently-linked phthalocyanine-oligo(p-phenylenevinylene)-C60 system. Influence of the solvent polarity. Journal of Inorganic Biochemistry, 2012, 108, 216-224.	1.5	10
437	Laser-Induced Azomethine Ylide Formation and Its Covalent Entrapment by Fulleropyrrolidine Derivatives During MALDI Analysis. Journal of the American Society for Mass Spectrometry, 2013, 24, 1413-1419.	1.2	10
438	Synthesis of Amphiphilic Ru ^{II} Heteroleptic Complexes Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiophene: Relevance of the Half‣andwich Complex Intermediate and Solvent Compatibility. Chemistry - A European Journal, 2015, 21, 16252-16265.	1.7	10
439	Photoinduced Cross-Linking of Short Furan-Modified DNA on Surfaces. Langmuir, 2017, 33, 1197-1201.	1.6	10
440	Synergy of Electrostatic and π–π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angewandte Chemie - International Edition, 2020, 59, 18786-18794.	7.2	10
441	Assessing Amphiphilic ABAB Zn(II) Phthalocyanines with Enhanced Photosensitization Abilities in In Vitro Photodynamic Therapy Studies Against Cancer. Molecules, 2020, 25, 213.	1.7	10
442	Panchromatic Light Harvesting and Stabilizing Chargeâ€5eparated States in Corrole–Phthalocyanine Conjugates through Coordinating a Subphthalocyanine. Chemistry - A European Journal, 2020, 26, 13451-13461.	1.7	10
443	Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303.	2.7	10
444	Tuning the Nanoaggregates of Sialylated Biohybrid Photosensitizers for Intracellular Activation of the Photodynamic Response. Chemistry - A European Journal, 2021, 27, 9634-9642.	1.7	10
445	A facile synthesis of alkylidenebutenolides via thermal rearrangement of benzisoxazolequinones. Tetrahedron Letters, 1991, 32, 5825-5828.	0.7	9
446	Preparation and electrochemical switching of novel bis(anthraquinone)diazacrown ethers. Tetrahedron Letters, 1994, 35, 6383-6386.	0.7	9
447	Synthesis, magnetic and mass spectrometric studies on dinuclear complexes based on Schiff-base triazolic ligands. Journal of the Chemical Society Dalton Transactions, 1995, , 2305-2310.	1.1	9
448	New polyaza macrobicyclic cryptands based on 1,2,4-triazole ligands and their Cu(I), Ag(I), Cu(II) and Ni(II) complexes. Tetrahedron Letters, 1998, 39, 1067-1070.	0.7	9
449	[2,2]paracyclophane-bisphthalocyanines: non-classical push-pull systems for second harmonic generation. Journal of Porphyrins and Phthalocyanines, 2005, 09, 788-793.	0.4	9
450	Synthesis and Optical Properties of Regioisomerically Pure Alkynylâ€Bridged Bis(phthalocyanines). European Journal of Organic Chemistry, 2009, 2009, 3212-3218.	1.2	9

#	Article	IF	CITATIONS
451	Encapsulation of phthalocyanine-C\$_{60}\$ fullerene conjugates into metallosupramolecular subphthalocyanine capsules: a turn of the screw. Turkish Journal of Chemistry, 2014, 38, 1006-1012.	0.5	9
452	Linking Pd(<scp>ii</scp>) and Ru(<scp>ii</scp>) phthalocyanines to single-walled carbon nanotubes. Dalton Transactions, 2014, 43, 7473-7479.	1.6	9
453	Tuning Electron Donor–Acceptor Hybrids by Alkali Metal Complexation. Chemistry - A European Journal, 2015, 21, 5916-5925.	1.7	9
454	Photoinduced Electron Transfer in a Zinc Phthalocyanine–Fullerene Conjugate Connected by a Long Flexible Spacer. ChemPlusChem, 2016, 81, 941-946.	1.3	9
455	Photoinduced Electron Injection from Zinc Phthalocyanines into Zinc Oxide Nanorods: Aggregation Effects. Journal of Physical Chemistry C, 2017, 121, 9594-9605.	1.5	9
456	Peripherally Cyanated Subphthalocyanines as Potential nâ€īype Organic Semiconductors. Chemistry - A European Journal, 2018, 24, 8331-8342.	1.7	9
457	Expanding the Subporphyrazine Chromophore by Conjugation of Phenylene and Vinylene Substituents: Rainbow SubPzs. Journal of Organic Chemistry, 2020, 85, 1948-1960.	1.7	9
458	Lightâ€Harvesting Properties of a Subphthalocyanine Solar Absorber Coupled to an Optical Cavity. Solar Rrl, 2021, 5, 2100308.	3.1	9
459	Targeting Cancer Cells with Photoactive Silica Nanoparticles. Current Pharmaceutical Design, 2016, 22, 6021-6038.	0.9	9
460	Modulating the dynamics of Förster resonance energy transfer and singlet fission by variable molecular spacers. Nanoscale, 2020, 12, 23061-23068.	2.8	9
461	Magnetic Interplay between <i>Ï€</i> â€Electrons of Openâ€Shell Porphyrins and <i>d</i> â€Electrons of Their Central Transition Metal Ions. Advanced Science, 2022, 9, e2105906.	5.6	9
462	A new approach to 1-alkyl-1,3-dihydro-2H-benzimidazol-2-ones. Monatshefte Für Chemie, 1985, 116, 639-644.	0.9	8
463	Heteroaromatic Nucleophilic Substitution Reactions by Phaseâ€Transfer Catalysis– Synthesis of New Alkoxypridazinâ€3(2 <i>H</i>)â€ones. Liebigs Annalen Der Chemie, 1985, 1985, 1465-1473.	0.8	8
464	Copper(II)-template synthesis of hexaphyrin meso-hexaaza analogues containing four thiadiazole moieties. Mendeleev Communications, 2010, 20, 192-194.	0.6	8
465	Construction of phthalocyanineâ€ŧerminated polystyrene nanoarchitectures. Journal of Physical Organic Chemistry, 2012, 25, 586-591.	0.9	8
466	Unusual Demetalation and Ordered Adsorption of a Pyridine-Appended Zinc Phthalocyanine at Metal–Electrolyte Interfaces Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 457-467.	1.5	8
467	Tuning the Electron Acceptor in Phthalocyanineâ€Based Electron Donor–Acceptor Conjugates. Chemistry - A European Journal, 2015, 21, 19028-19040.	1.7	8
468	Steuerung des GrenzflĤhenâ€Ladungstransfers und des Fillâ€Factors in CuOâ€basierten GrĤzelâ€Tandemzellen. Angewandte Chemie, 2019, 131, 4097-4102.	1.6	8

#	Article	IF	CITATIONS
469	<i>meso</i> â€(2â€Pyridyl)â€boron(III)â€subporphyrin: Perimeter Iridium(III) Coordination. Angewandte Chemie - International Edition, 2020, 59, 3127-3130.	7.2	8
470	A Constrained and "Inverted―[3+3] Salphen Macrocycle with an <i>ortho</i> â€Phenylethynyl Substitution Pattern. Chemistry - A European Journal, 2020, 26, 1683-1690.	1.7	8
471	Enantiomeric Recognition between Chiral Triazole-18-crown-6 Ligands and Organic Ammonium Cations Assessed by 13C and 1H NMR Relaxation Times. Journal of Organic Chemistry, 1994, 59, 6539-6542.	1.7	7
472	Functionalized phthalocyaninato-polysiloxanes in a Langmuir-Blodgett supramolecular architecture. Thin Solid Films, 1996, 284-285, 284-288.	0.8	7
473	Synthesis and magnetic coupling of a bis(\hat{l} ±-nitronyl nitroxide) radical derived from 1,2,4-triazole. Synthetic Metals, 2001, 121, 1830-1831.	2.1	7
474	Unusual mesomorphic behaviour of an ethynyl-substituted phthalocyanine. Chemical Communications, 2006, , 3107-3109.	2.2	7
475	A diastereoselective process induced in a curved aromatic molecule: oxidation of thioether-substituted subphthalocyanines. Tetrahedron Letters, 2009, 50, 860-862.	0.7	7
476	Protonation-Induced Changes in the Photophysical Properties of a Phthalocyanine and a Covalently-Linked, Phthalocyanine-C ₆₀ Fullerene Dyad. ECS Journal of Solid State Science and Technology, 2013, 2, M3145-M3150.	0.9	7
477	Creating and testing carbon interfaces – integrating oligomeric phthalocyanines onto single walled carbon nanotubes. Faraday Discussions, 2014, 172, 61-79.	1.6	7
478	Synthesis and characterization of <i>bis</i> -[PcRu (CO)][Ru ₂ (ap) _{4Journal of Porphyrins and Phthalocyanines, 2014, 18, 49-57.}	l bo.(κfont	:>⊄â
479	Polar columnar assemblies of subphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2020, 24, 33-42.	0.4	7
480	Unveiling Polymerization Mechanism in pHâ€regulated Supramolecular Fibers in Aqueous Media. Chemistry - A European Journal, 2021, 27, 11056-11060.	1.7	7
481	Photooxidation Responsive Elastin-Like Polypeptide Conjugates for Photodynamic Therapy Application. Bioconjugate Chemistry, 2021, 32, 1719-1728.	1.8	7
482	Interference Controls Conductance in Phthalocyanine Molecular Junctions. Journal of Physical Chemistry C, 2021, 125, 15035-15043.	1.5	7
483	Expanding the Chemical Space of Tetracyanobutaâ€1,3â€diene (TCBD) through a Cyanoâ€Dielsâ€Alder Reaction: Synthesis, Structure, and Physicochemical Properties of an Anthrylâ€fusedâ€1CBD Derivative. Chemistry - A European Journal, 2021, 27, 16049-16055.	1.7	7
484	Porphyrin-based supramolecular nanofibres as a dynamic and activatable photosensitiser for photodynamic therapy. Biomaterials Science, 2022, 10, 3259-3267.	2.6	7
485	SYNTHESIS OF ANTHRACYCLINONES VIAo-QUINODIMETHANES. Chemistry Letters, 1980, 9, 77-80.	0.7	6
486	4,5-Disubstituted Pyridazin-3(2H)-ones as Hypotensive Drugs: Incorporation of a β-Blocking Moiety. Archiv Der Pharmazie, 1986, 319, 60-64.	2.1	6

#	Article	IF	CITATIONS
487	A study of the phase-transfer alkoxycarbonylation of secondary alkyl amines. Application of a factorial design. Journal of the Chemical Society Perkin Transactions II, 1987, , 695-697.	0.9	6
488	Non-linear absorption of alkylsulfonyl metallophthalocyanines. Synthetic Metals, 2003, 137, 1479-1480.	2.1	6
489	Synthesis of low-symmetry subphthalocyanines with diverse functionalization patterns. Journal of Porphyrins and Phthalocyanines, 2009, 13, 203-214.	0.4	6
490	Aggregation of a Crown Ether Decorated Zinc–Phthalocyanine by Collision-Induced Desolvation of Electrospray Droplets. Journal of Physical Chemistry A, 2015, 119, 11454-11460.	1.1	6
491	Synthesis, photophysical studies and 1O2 generation of ruthenium phthalocyanine dendrimers. Journal of Porphyrins and Phthalocyanines, 2016, 20, 378-387.	0.4	6
492	Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO ^{â^'}). Analyst, The, 2016, 141, 1347-1355.	1.7	6
493	Combining Zinc Phthalocyanines, Oligo(<i>p</i> â€Phenylenevinylenes), and Fullerenes to Impact Reorganization Energies and Attenuation Factors. ChemPhysChem, 2019, 20, 2806-2815.	1.0	6
494	Subphthalocyaninato Boron(III) Hydride: Synthesis, Structure and Reactivity. Chemistry - A European Journal, 2021, 27, 12058-12062.	1.7	6
495	A self-assembled subphthalocyanine-based nanophotosensitiser for photodynamic therapy. Chemical Communications, 2022, 58, 669-672.	2.2	6
496	Rearrangement of 3â€methoxy substituted [2, 1]benzisoxazole―and naphth[2,3]isoxazolequinones in dimethyl sulfoxide solution. Journal of Heterocyclic Chemistry, 1985, 22, 705-711.	1.4	5
497	Dual Role of Phthalocyanines in Carbon Nanostructure-Based Organic Photovoltaics. Structure and Bonding, 2013, , 145-191.	1.0	5
498	Photoinduced electron transfer in a <i>meso</i> -linked Zn (II) porphyrin - Zn (II) phthalocyar supramolecular system. Journal of Porphyrins and Phthalocyanines, 2013, 17, 501-510.	ninex#font:	>/< s ont>C
499	Exfoliation of Graphene by Dendritic Waterâ€6oluble Zinc Phthalocyanine Amphiphiles in Polar Media. Chemistry - A European Journal, 2018, 24, 18696-18704.	1.7	5
500	Effect of Co-Adsorbate and Hole Transporting Layer on the Photoinduced Charge Separation at the TiO ₂ –Phthalocyanine Interface. ACS Omega, 2018, 3, 4947-4958.	1.6	5
501	Phthalocyanine-corannulene conjugates: Synthesis, complexation studies with a pyridyl-functionalized C60 fullerene, and photophysical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 410-415.	0.4	5
502	Meso ‧ubstituted Tetrabenzotriazaporphyrins for Dye‧ensitized Solar Cells. Helvetica Chimica Acta, 2020, 103, e2000085.	1.0	5
503	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. Materials Advances, 2021, 2, 1613-1620.	2.6	5
504	Subphthalocyanineâ€Diketopyrrolopyrrole Conjugates: 3D Starâ€Shaped Systems as Nonâ€Fullerene Acceptors in Polymer Solar Cells with High Openâ€Circuit Voltage. ChemPlusChem, 2021, 86, 1366-1373.	1.3	5

#	Article	IF	CITATIONS
505	A Janus-Type Phthalocyanine for the Assembly of Photoactive DNA Origami Coatings. Bioconjugate Chemistry, 2021, 32, 1123-1129.	1.8	5
506	Bottomâ€up Fabrication and Atomic‣cale Characterization of Triply Linked, Laterally Ï€â€Extended Porphyrin Nanotapes**. Angewandte Chemie, 2021, 133, 16344-16350.	1.6	5
507	Dianionic States of Trithiadodecaazahexaphyrin Complexes with Homotrinuclear M ^{II} ₃ O Clusters (M = Ni and Cu): Crystal Structures, Metal- Or Macrocycle-Centered Reduction, and Doublet–Quartet Transitions in the Dianions. Inorganic Chemistry. 2021. 60. 9857-9868.	1.9	5
508	Nanoparticles for Triple Drug Release for Combined Chemo―and Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 14610-14618.	1.7	5
509	Synthesis and characterization of highly conjugated unsymmetrically substituted phthalocyanines. Journal of Porphyrins and Phthalocyanines, 1997, 1, 221-226.	0.4	5
510	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5
511	Regioâ€, Stereoâ€, and Atropselective Synthesis of C ₆₀ Fullerene Bisadducts by Supramolecularâ€Directed Functionalization. Angewandte Chemie, 2016, 128, 11186-11191.	1.6	4
512	Metallo-organic ensembles of tritopic subphthalocyanine ligands. Journal of Porphyrins and Phthalocyanines, 2017, 21, 782-789.	0.4	4
513	Feinabstimmung von intramolekularem resonantem Försterâ€Energietransfer und Aktivierung intramolekularer Singulettspaltung. Angewandte Chemie, 2018, 130, 16528-16533.	1.6	4
514	meso â€(2â€Þyridyl)â€boron(III)â€subporphyrin: Perimeter Iridium(III) Coordination. Angewandte Chemie, 2020, 132, 3151-3154.	1.6	4
515	Synergie von elektrostatischen und Ï€â€Ï€â€Wechselwirkungen für die Verwirklichung von künstlichen photosynthetischen Modellsystemen auf Nanoâ€Ebene. Angewandte Chemie, 2020, 132, 18946-18955.	1.6	4
516	Enabling Racemization of Axially Chiral Subphthalocyanineâ€Tetracyanobutadieneâ€Aniline Enantiomers by Triplet State Photogeneration. Angewandte Chemie, 2020, 132, 21410-21415.	1.6	4
517	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1697-1697.	1.7	4
518	From Dipolar to Octupolar Phthalocyanine Derivatives: The Example of Subphthalocyanines. Challenges and Advances in Computational Chemistry and Physics, 2006, , 509-535.	0.6	4
519	Liquid matrix induced processes in fast atom bombardment mass spectrometry of polyazacrown transition metal complexes. Inorganica Chimica Acta, 1994, 219, 85-92.	1.2	3
520	Synthesis and Langmuir-Blodgett studies of silicon-phthalocyanine oligomers: Potential templates for organizing electroactive monomers. Synthetic Metals, 1999, 102, 1521-1522.	2.1	3
521	Phthalocyanine–Porphyrin Heteroarrays. , 2012, , 149-216.		3
522	Glycophthalocyanines: structural differentiation and isomeric differentiation by matrixâ€assisted laser desorption/ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 1019-1026.	0.7	3

#	Article	IF	CITATIONS
523	Incorporation of a tricationic subphthalocyanine in an organic photovoltaic device. Journal of Porphyrins and Phthalocyanines, 2013, 17, 1016-1021.	0.4	3
524	On the relative stability of selfâ€assembled metallosupramolecular subphthalocyanine capsules determined by ESIâ€Qâ€TOF tandem mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 713-717.	0.7	3
525	Cholesteryl oleate-appended phthalocyanines as potential photosensitizers in the treatment of leishmaniasis. Journal of Porphyrins and Phthalocyanines, 2015, 19, 320-328.	0.4	3
526	Introducing rigid ï€-conjugated peripheral substituents in phthalocyanines for DSSCs. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1361-1367.	0.4	3
527	Salt Cluster Attachment to Crown Ether Decorated Phthalocyanines in the Gas Phase. Journal of Physical Chemistry A, 2018, 122, 1623-1633.	1.1	3
528	Quadrupolar Cyclopenta[<i>hi</i>]aceanthryleneâ€Based Electron Donorâ€Acceptorâ€Donor Conjugates: Charge Transfer versus Charge Separation. Angewandte Chemie, 2019, 131, 14786-14794.	1.6	3
529	Tuning the Acceptor Unit of Push–Pull Porphyrazines for Dye-Sensitized Solar Cells. Molecules, 2021, 26, 2129.	1.7	3
530	Human serum albumin nanoparticles loaded with phthalocyanine dyes for potential use in photodynamic therapy for atherosclerotic plaques. Precision Nanomedicine, 2019, 2, 279-302.	0.4	3
531	Organic Photovoltaics. Revista Virtual De Quimica, 2015, 7, .	0.1	3
532	Synthesis of 6-Oxo-5,6,7,8-tetrahydro-1,4-naphthoquinone and Derivatives and a New, Convenient Preparation ofo-Naphthazarin. Synthesis, 1980, 1980, 753-755.	1.2	2
533	A New Convenient Synthesis of Phosphoranylideneaminoquinones from Isoxazolequinones. Synthesis, 1993, 1235-1238.	1.2	2
534	Synthesis and second-order non-linear optical properties of substituted aminobenzoquinones. Journal of Materials Chemistry, 1995, 5, 385-387.	6.7	2
535	The singular optical properties of phthalocyanines: from photosensitizers for photodynamic therapy to nonlinear optical applications (Invited Paper). , 2005, , .		2
536	Synthesis and characterization of high molecular weight phthalocyanine-PPV copolymers through post-polymerization functionalization. Journal of Porphyrins and Phthalocyanines, 2011, 15, 659-666.	0.4	2
537	Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11901-11908.	1.3	2
538	A New Dimension for Low-Dimensional Carbon Nanostructures. CheM, 2017, 3, 21-24.	5.8	2
539	Peripherally Cyanated Subphthalocyanines as Potential nâ€Type Organic Semiconductors. Chemistry - A European Journal, 2018, 24, 8244-8244.	1.7	2
540	Innenrücktitelbild: On‧urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids (Angew. Chem. 3/2020). Angewandte Chemie, 2020, 132, 1371-1371.	1.6	2

#	Article	IF	CITATIONS
541	Kontrolle des intramolekularen Försterâ€Resonanzenergietransfers und der Singulettspaltung in einem Subporphyrazinâ€Pentacenâ€Konjugat mittels Lösungsmittelpolaritä Angewandte Chemie, 2021, 133, 1496-1503.	1.6	2
542	Boosting the Stability of Boron Peroxides through Subphthalocyanine Coordination. Organic Materials, 2021, 03, 141-145.	1.0	2
543	meso-Substituted Porphyrin with Benzo[1,2-b:4,5-b']dithiophene Moieties. Macroheterocycles, 2014, 7, 133-138.	0.9	2
544	Exploring the Association of Electronâ€Donating Corroles with Phthalocyanines as Electron Acceptors. Chemistry - A European Journal, 2022, , .	1.7	2
545	Stereoselective synthesis of functionalized butenolides by the photochemical rearrangement of [2,1]benzisoxazolequinone derivatives. Tetrahedron, 1997, 53, 3363-3368.	1.0	1
546	First Synthesis of Symmetrical and Unsymmetrical Conjugated Trinuclear Phthalocyanines Covalently Linked by Ethynyl Bridges. Synlett, 2006, 2006, 3231-3236.	1.0	1
547	Effect of a chiral ligand in the self-assembly of subphthalocyanine-based metallosupramolecular capsules. Canadian Journal of Chemistry, 2014, 92, 685-687.	0.6	1
548	Cyclopentadithiophene-functionalized Ru(II)-bipyridine sensitizers for dye-sensitized solar cells. Polyhedron, 2014, 82, 132-138.	1.0	1
549	Evidence of charge-remote fragmentation in protonated [60]fulleropyrrolidine multi-adducts. International Journal of Mass Spectrometry, 2017, 413, 69-74.	0.7	1
550	Correction: Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers. Organic and Biomolecular Chemistry, 2018, 16, 1037-1037.	1.5	1
551	Synthesis of 1,2-dicyanoferrocene by cyanation reactions. Journal of Porphyrins and Phthalocyanines, 2020, 24, 786-793.	0.4	1
552	Cyclopenta[hi]aceanthrylene Decorated with Multiple and Long Alkoxy Chains: Physicochemical Properties and Single-Walled Carbon Nanotubes' Exfoliation Capability. ECS Journal of Solid State Science and Technology, 2020, 9, 051011.	0.9	1
553	Synthesis of Subphthalocyanine-Based Stopcock for Zeolite L. Macroheterocycles, 2011, , 245-248.	0.9	1
554	Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angewandte Chemie, 0, , .	1.6	1
555	Synthetic Advances in Phthalocyanine Chemistry. ChemInform, 2003, 34, no.	0.1	0
556	Phthalocyanine—Fullerene Molecular Systems. ChemInform, 2004, 35, no.	0.1	0
557	Subphthalocyanines: Non-Planar Aromatic Compounds as Electroactive and Photoactive Components in Fullerene Covalent and Non-Covalent Assemblies. ChemInform, 2004, 35, no.	0.1	0
558	Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
559	Synthesis and Photophysical Characterization of a Subphthalocyanine Fused Dimer-C60 Dyad ChemInform, 2005, 36, no.	0.1	0
560	(Invited) Synthesis and Photophysical Properties of Hydrogen-Bonded Phthalocyanine and Subphthalocyanine-Perylenediimide Assemblies. ECS Meeting Abstracts, 2010, , .	0.0	0
561	Preface from M. Salomé RodrÃguez-Morgade and Tomás Torres. Journal of Porphyrins and Phthalocyanines, 2011, 15, i-i.	0.4	0
562	Preface from M. Salomé RodrÃguez-Morgade and Tomás Torres. Journal of Porphyrins and Phthalocyanines, 2011, 15, i-ii.	0.4	0
563	(Invited) Synthesis of Subphthalocyanine pi-Complexes. ECS Meeting Abstracts, 2012, , .	0.0	0
564	Innentitelbild: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. 8/2012). Angewandte Chemie, 2012, 124, 1766-1766.	1.6	0
565	Inside Cover: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. Int. Ed. 8/2012). Angewandte Chemie - International Edition, 2012, 51, 1732-1732.	7.2	0
566	Manipulating charge separation dynamics of zinc phthalocyanine based TiO <inf>2</inf> films through asymmetrical push-pull structures. , 2013, , .		0
567	Frontispiz: Quadrupolar Cyclopenta[<i>hi</i>]aceanthryleneâ€Based Electron Donorâ€Acceptorâ€Donor Conjugates: Charge Transfer versus Charge Separation. Angewandte Chemie, 2019, 131, .	1.6	0
568	Frontispiece: Quadrupolar Cyclopenta[<i>hi</i>]aceanthryleneâ€Based Electron Donorâ€Acceptorâ€Donor Conjugates: Charge Transfer versus Charge Separation. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
569	Selective guest recognition by a metallo-organic phthalocyanine-based host. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1570-1575.	0.4	0
570	Synthesis of unsymmetrically substituted expanded hemiporphyrazines: A monoiodo functionalized hemihexaphyrazine. Journal of Porphyrins and Phthalocyanines, 2021, 25, 396-399.	0.4	0
571	Unraveling Coordination Features of Hemihexaphyrazines - New Approach to Perspective Materials for Nanoelectronics. ECS Meeting Abstracts, 2021, MA2021-01, 785-785.	0.0	0
572	Porphyrinoids for Photodynamic Therapy (PDT) and Antimicrobial PDT. ECS Meeting Abstracts, 2021, MA2021-01, 766-766.	0.0	0
573	(Invited) Porphyrinoid-Carbon Nanostructure Ensembles. ECS Meeting Abstracts, 2021, MA2021-01, 633-633.	0.0	0
574	Preface—JSS Focus Issue on Porphyrins, Phthalocyanines, and Supramolecular Assemblies in Honor of Karl M. Kadish. ECS Journal of Solid State Science and Technology, 2020, 9, 080001.	0.9	0
575	Porphyrinoid-Carbon Nanostructure Systems and Fused Porphyrin-Graphene Nanoribbons. ECS Meeting Abstracts, 2021, MA2021-02, 516-516.	0.0	0
576	Chiral Self-Recognition and Self-Discrimination Processes in Different Subphthalocyanine Aggregation Regimes. ECS Meeting Abstracts, 2022, MA2022-01, 941-941.	0.0	0

#	Article	IF	CITATIONS
577	Can Something that is Called "Sub―be Superb? The Case of Subphthalocyanines. ECS Meeting Abstracts, 2022, MA2022-01, 948-948.	0.0	0
578	(Invited) Porphyrinoid-Carbon Nanostructure Ensembles and Fused Porphyrin-Graphene Nanoribbons. ECS Meeting Abstracts, 2022, MA2022-01, 828-828.	0.0	0
579	Metallosupramolecular Assemblies of Phthalocyanines, Subphthalocyanines and Bodipys: Photosensitizers for Visible-Light Induced Processes. ECS Meeting Abstracts, 2022, MA2022-01, 975-975.	0.0	0