
Soolyeon Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy efficiency and thermal comfort in historic buildings: A review. Renewable and Sustainable Energy Reviews, 2016, 61, 70-85.	16.4	290
2	Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy, 2019, 191, 7-18.	6.1	131
3	Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands. Applied Energy, 2017, 190, 222-231.	10.1	50
4	Development of a statistical analysis model to benchmark the energy use intensity of subway stations. Applied Energy, 2016, 179, 488-496.	10.1	36
5	Anti-logic or common sense that can hinder machine's energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments. Applied Energy, 2017, 204, 117-130.	10.1	31
6	Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. Building and Environment, 2017, 124, 57-68.	6.9	29
7	Improving the quality of building spaces that are planned mainly on loads rather than residents: Human comfort and energy savings for warehouses. Energy and Buildings, 2018, 178, 38-48.	6.7	21
8	Performance analysis of space heating smart control models for energy and control effectiveness in five different climate zones. Building and Environment, 2017, 115, 316-331.	6.9	20
9	Comparative analysis of cooling energy performance between water-cooled VRF and conventional AHU systems in a commercial building. Applied Thermal Engineering, 2020, 170, 114992.	6.0	20
10	ls Commissioning Once Enough?. Energy Engineering: Journal of the Association of Energy Engineers, 2004, 101, 7-19.	0.5	18
11	Leveraging Open-Source Tools for Collaborative Macro-energy System Modeling Efforts. Joule, 2020, 4, 2523-2526.	24.0	18
12	Application of Artificial Neural Network for the Optimum Control of HVAC Systems in Double-Skinned Office Buildings. Energies, 2019, 12, 4754.	3.1	15
13	Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model. Energy, 2018, 151, 11-25.	8.8	14
14	Dead-band vs. machine-learning control systems: Analysis of control benefits and energy efficiency. Journal of Building Engineering, 2017, 12, 17-25.	3.4	12
15	Methodology for energy strategy to prescreen the feasibility of Ground Source Heat Pump systems in residential and commercial buildings in the United States. Energy Strategy Reviews, 2017, 18, 53-62.	7.3	12
16	Energy simulation modeling and savings analysis of load sharing between house and office. Renewable Energy, 2013, 54, 70-77.	8.9	9
17	Numerical Study of Balancing between Indoor Building Energy and Outdoor Thermal Comfort with a Flexible Building Element. Sustainability, 2019, 11, 6654.	3.2	9
18	Metamodels to assess the thermal performance of naturally ventilated, low-cost houses in Brazil. Energy and Buildings, 2019, 204, 109457.	6.7	8

SOOLYEON CHO

#	Article	IF	CITATIONS
19	Heating energy savings potential from retrofitting old apartments with an advanced double-skin façade system in cold climate. Frontiers in Energy, 2020, 14, 224-240.	2.3	8
20	A Study on the Evaluation of the Annual Energy Consumption for a Geothermal Heat Pump System with Open Loop and Closed Loop Ground Heat Exchangers. International Journal of Air-Conditioning and Refrigeration, 2017, 25, 1750024.	0.7	7
21	Performance analysis of a double-skin façade system installed at different floor levels of high-rise apartment building. Journal of Building Engineering, 2019, 26, 100900.	3.4	7
22	Annual Energy Consumption Cut-Off with Cooling System Design Parameter Changes in Large Office Buildings. Energies, 2020, 13, 2034.	3.1	6
23	Study on the Performance of Multiple Sources and Multiple Uses Heat Pump System in Three Different Cities. Energies, 2020, 13, 5211.	3.1	5
24	Network-based energy supply optimal system in the condition where both heating and cooling are required simultaneously in a swing season. Intelligent Buildings International, 2018, 10, 42-57.	2.3	5
25	Application priority of GSHP systems in the climate conditions of the United States. Advances in Building Energy Research, 2019, 13, 1-17.	2.3	3
26	Energy savings analysis of fuel-cell microgeneration systems with ground source heat pumps in load-sharing buildings. International Journal of Low-Carbon Technologies, 2015, 10, 405-411.	2.6	1
27	Leveraging Open-Source Tools for Collaborative Macro-energy System Modeling Efforts. Joule, 2021, 5, 507.	24.0	1
28	A Study on Utility of Retrofit that Minimizes the Replacement of Heat-Source System in Large Offices. Energies, 2019, 12, 4309.	3.1	0