Stefan Hüttelmaier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076713/publications.pdf

Version: 2024-02-01

101 papers 9,879 citations

47006 47 h-index 95 g-index

107 all docs

107 docs citations

107 times ranked

12319 citing authors

#	Article	IF	Citations
1	Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways. Haematologica, 2022, 107, 187-200.	3.5	10
2	Fast forward evolution in real time: the rapid spread of SARS-CoV-2 variant of concern lineage B.1.1.7 in Saxony-Anhalt over a period of 5Âmonths. Laboratoriums Medizin, 2022, 46, 71-75.	0.6	3
3	Noncanonical Function of AGO2 Augments T-cell Receptor Signaling in T-cell Prolymphocytic Leukemia. Cancer Research, 2022, 82, 1818-1831.	0.9	9
4	It did not stop there: rapid substitution of circulating SARS-CoV-2 variant of concern B.1.1.7 (Alpha) by variant of concern B.1.617.2 (Delta) and further evolution of different Delta sublineages in Southern Saxony-Anhalt in late summer 2021. Laboratoriums Medizin, 2022, 46, 77-78.	0.6	0
5	IGF2BP1 Promotes Proliferation of Neuroendocrine Neoplasms by Post-Transcriptional Enhancement of EZH2. Cancers, 2022, 14, 2121.	3.7	6
6	HDLBP binds ER-targeted mRNAs by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins. Nature Communications, 2022, 13, 2727.	12.8	9
7	Melanoma RBPome identification reveals PDIA6 as an unconventional RNA-binding protein involved in metastasis. Nucleic Acids Research, 2022, 50, 8207-8225.	14.5	9
8	IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis. Modern Pathology, 2021, 34, 32-41.	5 . 5	29
9	NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration. Oncogene, 2021, 40, 909-921.	5.9	34
10	IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biology, 2021, 18, 391-403.	3.1	21
11	IGF2BP1, a Conserved Regulator of RNA Turnover in Cancer. Frontiers in Molecular Biosciences, 2021, 8, 632219.	3.5	24
12	The Emerging Roles of RNA m6A Methylation and Demethylation as Critical Regulators of Tumorigenesis, Drug Sensitivity, and Resistance. Cancer Research, 2021, 81, 3431-3440.	0.9	129
13	The MicroRNA Landscape of MYCN-Amplified Neuroblastoma. Frontiers in Oncology, 2021, 11, 647737.	2.8	12
14	Oncogenic Potential of the Dual-Function Protein MEX3A. Biology, 2021, 10, 415.	2.8	10
15	Musashi–1—A Stemness RBP for Cancer Therapy?. Biology, 2021, 10, 407.	2.8	11
16	Identification of lymphocyte cell-specific protein-tyrosine kinase (LCK) as a driver for invasion and migration of oral cancer by tumor heterogeneity exploitation. Molecular Cancer, 2021, 20, 88.	19.2	21
17	Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Research, 2021, 49, e92-e92.	14.5	50
18	Targeting HDACs in Pancreatic Neuroendocrine Tumor Models. Cells, 2021, 10, 1408.	4.1	11

#	Article	IF	CITATIONS
19	MiRNA Deregulation Distinguishes Anaplastic Thyroid Carcinoma (ATC) and Supports Upregulation of Oncogene Expression. Cancers, 2021, 13, 5913.	3.7	4
20	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	9.7	44
21	Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatric Research, 2020, 87, 669-676.	2.3	10
22	RNA Sequencing of Collecting Duct Renal Cell Carcinoma Suggests an Interaction between miRNA and Target Genes and a Predominance of Deregulated Solute Carrier Genes. Cancers, 2020, 12, 64.	3.7	18
23	Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts. Nucleic Acids Research, 2020, 48, 8927-8942.	14.5	20
24	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3 . 5	18
25	The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Research, 2020, 48, 8576-8590.	14.5	83
26	Comprehensive Analysis of LincRNAs in Classical and Basal-Like Subtypes of Pancreatic Cancer. Cancers, 2020, 12, 2077.	3.7	6
27	Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. International Journal of Molecular Sciences, 2020, 21, 5098.	4.1	16
28	Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Research, 2020, 48, 10368-10382.	14.5	57
29	Synthetic circular miR-21 RNA decoys enhance tumor suppressor expression and impair tumor growth in mice. NAR Cancer, 2020, 2, zcaa014.	3.1	12
30	MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation. Cancers, 2020, 12, 3654.	3.7	7
31	LINC00261 Is Differentially Expressed in Pancreatic Cancer Subtypes and Regulates a Pro-Epithelial Cell Identity. Cancers, 2020, 12, 1227.	3.7	17
32	RNA-Binding Proteins in Acute Leukemias. International Journal of Molecular Sciences, 2020, 21, 3409.	4.1	36
33	Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. Journal of Proteome Research, 2020, 19, 4389-4392.	3.7	159
34	RNA Binding Proteins as Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 4190.	4.1	16
35	POLIII-derived non-coding RNAs acting as scaffolds and decoys. Journal of Molecular Cell Biology, 2019, 11, 880-885.	3.3	19
36	JMJD6 is a tumorigenic factor and therapeutic target in neuroblastoma. Nature Communications, 2019, 10, 3319.	12.8	63

#	Article	IF	Citations
37	Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3. Nature Communications, 2019, 10, 2266.	12.8	53
38	The Critical Role of RNA m6A Methylation in Cancer. Cancer Research, 2019, 79, 1285-1292.	0.9	505
39	Drugging MYCN Oncogenic Signaling through the MYCN-PA2G4 Binding Interface. Cancer Research, 2019, 79, 5652-5667.	0.9	24
40	The differential statin effect on cytokine production of monocytes or macrophages is mediated by differential geranylgeranylation-dependent Rac1 activation. Cell Death and Disease, 2019, 10, 880.	6.3	26
41	IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Research, 2019, 47, 375-390.	14.5	256
42	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
43	IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Research, 2018, 46, 6285-6303.	14.5	100
44	Therapeutic targeting of tumorâ€associated macrophages in pancreatic neuroendocrine tumors. International Journal of Cancer, 2018, 143, 1806-1816.	5.1	35
45	The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Experimental Neurology, 2018, 306, 222-231.	4.1	18
46	Mud2 functions in transcription by recruiting the Prp19 and TREX complexes to transcribed genes. Nucleic Acids Research, 2018, 46, 9749-9763.	14.5	25
47	HuD Is a Neural Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small Non-coding RNA. Molecular Cell, 2018, 71, 256-270.e10.	9.7	51
48	The Histone Methyltransferase DOT1L Promotes Neuroblastoma by Regulating Gene Transcription. Cancer Research, 2017, 77, 2522-2533.	0.9	59
49	AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nature Cell Biology, 2017, 19, 844-855.	10.3	132
50	UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. Cancer Cell, 2016, 30, 694-707.	16.8	131
51	Non-coding RNAs, the cutting edge of histone messages. RNA Biology, 2016, 13, 367-372.	3.1	1
52	The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family. Nucleic Acids Research, 2016, 44, 3845-3864.	14.5	88
53	Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Research, 2015, 43, e26-e26.	14.5	105
54	<i>IGF2BP1</i> Harbors Prognostic Significance by Gene Gain and Diverse Expression in Neuroblastoma. Journal of Clinical Oncology, 2015, 33, 1285-1293.	1.6	55

#	Article	IF	Citations
55	WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma. Cancer Research, 2015, 75, 5143-5154.	0.9	88
56	Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncolmmunology, 2015, 4, e1008805.	4.6	58
57	The Y3** ncRNA promotes the 3′ end processing of histone mRNAs. Genes and Development, 2015, 29, 1998-2003.	5.9	30
58	Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology, 2014, 59, 1900-1911.	7.3	155
59	Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity) Tj ETQq $1\ 1\ 0.784$	1314 rgBT	19verlock
60	Extraction of protein profiles from primary neurons using active contour models and wavelets. Journal of Neuroscience Methods, 2014, 225, 1-12.	2.5	8
61	The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Seminars in Cancer Biology, 2014, 29, 3-12.	9.6	204
62	Effects of a Novel Long Noncoding RNA, IncUSMycN, on N-Myc Expression and Neuroblastoma Progression. Journal of the National Cancer Institute, 2014, 106, .	6.3	98
63	Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression?. Cellular and Molecular Life Sciences, 2013, 70, 2657-2675.	5.4	533
64	Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules, 2013, 3, 143-156.	4.0	39
65	FMRP regulates actin filament organization via the armadillo protein p0071. Rna, 2013, 19, 1483-1496.	3.5	27
66	IGF2BP1 promotes mesenchymal cell properties and migration of tumor-derived cells by enhancing the expression of LEF1 and SNAI2 (SLUG). Nucleic Acids Research, 2013, 41, 6618-6636.	14.5	59
67	Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biological Chemistry, 2013, 394, 1077-1090.	2.5	94
68	Keratins Mediate Localization of Hemidesmosomes and Repress Cell Motility. Journal of Investigative Dermatology, 2013, 133, 181-190.	0.7	89
69	Insulin signaling via Akt2 switches plakophilin 1 functions from stabilizing cell adhesion to promoting cell proliferation. Journal of Cell Science, 2013, 126, 1832-44.	2.0	35
70	IGF2BP1. Cell Adhesion and Migration, 2012, 6, 312-318.	2.7	47
71	IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes and Development, 2012, 26, 176-189.	5.9	122
72	Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. Rna, 2012, 18, 958-972.	3. 5	133

#	Article	IF	CITATIONS
73	Cell migration analysis: Segmenting scratch assay images with level sets and support vector machines. Pattern Recognition, 2012, 45, 3154-3165.	8.1	27
74	Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Research, 2011, 4, S1.	1.5	38
75	Plakophilin 1 stimulates translation by promoting elF4A1 activity. Journal of Cell Biology, 2010, 188, 463-471.	5. 2	72
76	Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. Rna, 2010, 16, 1420-1428.	3.5	31
77	Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. Rna, 2009, 15, 104-115.	3.5	262
78	IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3′UTR. Rna, 2009, 15, 1528-1542.	3.5	81
79	Automatic analysis of flourescence labeled neurites in microscope images. , 2009, , .		1
80	Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2–dependent RNA granules. Journal of Cell Biology, 2008, 181, 579-586.	5.2	168
81	Beyond Regulation of Cell Adhesion: Local Control of RhoA at the Cleavage Furrow by the p0071 Catenin. Cell Cycle, 2007, 6, 122-127.	2.6	22
82	ZBP2 Facilitates Binding of ZBP1 to \hat{I}^2 -Actin mRNA during Transcription. Molecular and Cellular Biology, 2007, 27, 8340-8351.	2.3	102
83	The prolineâ€rich protein palladin is a binding partner for profilin. FEBS Journal, 2006, 273, 26-33.	4.7	57
84	The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nature Cell Biology, 2006, 8, 1432-1440.	10.3	65
85	A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nature Structural and Molecular Biology, 2006, 13, 839-848.	8.2	92
86	Ezrin expression is related to poor prognosis in FIGO stage I endometrioid carcinomas. Modern Pathology, 2006, 19, 581-587.	5.5	52
87	Asymmetric Arginine Dimethylation of Heterogeneous Nuclear Ribonucleoprotein K by Protein-arginine Methyltransferase 1 Inhibits Its Interaction with c-Src. Journal of Biological Chemistry, 2006, 281, 11115-11125.	3.4	97
88	ZBP1 regulates mRNA stability during cellular stress. Journal of Cell Biology, 2006, 175, 527-534.	5.2	163
89	Spatial regulation of \hat{I}^2 -actin translation by Src-dependent phosphorylation of ZBP1. Nature, 2005, 438, 512-515.	27.8	569
90	Promotion of importin α–mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14-3-3. Journal of Cell Biology, 2005, 169, 415-424.	5.2	45

#	Article	IF	CITATIONS
91	She2p Is a Novel RNA Binding Protein with a Basic Helical Hairpin Motif. Cell, 2004, 119, 491-502.	28.9	66
92	Two ZBP1 KH domains facilitate \hat{l}^2 -actin mRNA localization, granule formation, and cytoskeletal attachment. Journal of Cell Biology, 2003, 160, 77-87.	5.2	233
93	The PTB interacting protein raver1 regulates Â-tropomyosin alternative splicing. EMBO Journal, 2003, 22, 6356-6364.	7.8	97
94	From the Nucleus Toward the Cell Periphery: a Guided Tour for mRNAs. Physiology, 2003, 18, 7-11.	3.1	5
95	Metavinculin Mutations Alter Actin Interaction in Dilated Cardiomyopathy. Circulation, 2002, 105, 431-437.	1.6	256
96	Asymmetric Sorting of Ash1p in Yeast Results from Inhibition of Translation by Localization Elements in the mRNA. Molecular Cell, 2002, 10, 1319-1330.	9.7	116
97	Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Research, 2002, 62, 6278-88.	0.9	331
98	Phosphorylation of the Vasodilator-stimulated Phosphoprotein Regulates Its Interaction with Actin. Journal of Biological Chemistry, 2000, 275, 30817-30825.	3.4	223
99	Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Letters, 1999, 451, 68-74.	2.8	116
100	The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4,5-bisphosphate. Current Biology, 1998, 8, 479-488.	3.9	153
101	Characterization of Two F-Actin-Binding and Oligornerization Sites in the Cell-Contact Protein Vinculin. FEBS Journal, 1997, 247, 1136-1142.	0.2	95