Lucia Carboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076663/publications.pdf

Version: 2024-02-01

73 1,972 26 41 papers citations h-index g-index

78 78 78 2928
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. European Neuropsychopharmacology, 2022, 57, 1-14.	0.7	8
2	Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. International Journal of Molecular Sciences, 2021, 22, 599.	4.1	9
3	An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Frontiers in Pharmacology, 2021, 12, 733577.	3.5	13
4	Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. European Neuropsychopharmacology, 2020, 31, 69-85.	0.7	9
5	Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells, 2020, 9, 1818.	4.1	16
6	Folate metabolism biomarkers from two randomised placebo-controlled clinical studies with paroxetine and venlafaxine. World Journal of Biological Psychiatry, 2020, 22, 1-7.	2.6	0
7	Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacological Research, 2020, 158, 104941.	7.1	12
8	Biomarkers for response in major depression: comparing paroxetine and venlafaxine from two randomised placebo-controlled clinical studies. Translational Psychiatry, 2019, 9, 182.	4.8	57
9	Cross-disease analysis of Alzheimer's disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Scientific Reports, 2019, 9, 3965.	3.3	66
10	Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats. Drug and Alcohol Dependence, 2018, 189, 12-20.	3.2	16
11	Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology, 2018, 43, 2134-2145.	5.4	25
12	Highly polygenic architecture of antidepressant treatment response: Comparative analysis of SSRI and NRI treatment in an animal model of depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 235-250.	1.7	10
13	Hippocampal 5â€HT ₇ receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediatedâ€neurotransmission ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩. British Journal of Pharmacology, 2016, 173, 1438-1451.	5.4	21
14	Treatment with the neurotoxic Aβ (25–35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells. Experimental and Toxicologic Pathology, 2016, 68, 271-276.	2.1	31
15	Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug and Alcohol Dependence, 2016, 166, 150-158.	3.2	8
16	Proteome effects of antipsychotic drugs: Learning from preclinical models. Proteomics - Clinical Applications, 2016, 10, 430-441.	1.6	15
17	Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling. Proteomics - Clinical Applications, 2016, 10, 1254-1263.	1.6	6
18	Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure. Pharmacological Research, 2016, 114, 209-218.	7.1	19

#	Article	IF	CITATIONS
19	Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug and Alcohol Dependence, 2016, 161, 265-275.	3.2	28
20	The contribution of proteomic studies in humans, animal models, and after antidepressant treatments to investigate the molecular neurobiology of major depression. Proteomics - Clinical Applications, 2015, 9, 889-898.	1.6	9
21	Peripheral leukocyte expression of the potential biomarker proteins Bdnf, Sirt1, and Psen1 is not regulated by promoter methylation in Alzheimer's disease patients. Neuroscience Letters, 2015, 605, 44-48.	2.1	32
22	Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Translational Psychiatry, 2015, 5, e519-e519.	4.8	43
23	Human apolipoprotein E4 modulates the expression of Pin1, Sirtuin 1, and Presenilin 1 in brain regions of targeted replacement apoE mice. Neuroscience, 2014, 256, 360-369.	2.3	26
24	Proteomics of Preclinical Models of Depression. Advances in Biological Psychiatry, 2014, , 92-92.	0.2	1
25	The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Medicine, 2014, 12, 73.	5.5	52
26	Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 893-903.	3.0	11
27	p38 MAP kinase activation does not stimulate serotonin transport in rat brain: Implications for sickness behaviour mechanisms. Life Sciences, 2013, 93, 30-37.	4.3	12
28	Peripheral Biomarkers in Animal Models of Major Depressive Disorder. Disease Markers, 2013, 35, 33-41.	1.3	18
29	Slow dissociation of partial agonists from the D2 receptor is linked to reduced prolactin release. International Journal of Neuropsychopharmacology, 2012, 15, 645-656.	2.1	22
30	Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. Molecular Biology Reports, 2012, 39, 2921-2935.	2.3	13
31	Escitalopram modulates neuron-remodelling proteins in a rat gene–environment interaction model of depression as revealed by proteomics. Part I: genetic background. International Journal of Neuropsychopharmacology, 2011, 14, 796-833.	2.1	20
32	Different susceptibility to social defeat stress of BalbC and C57BL6/J mice. Behavioural Brain Research, 2011, 216, 100-108.	2.2	119
33	Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience, 2011, 176, 349-380.	2.3	42
34	Nortriptyline influences protein pathways involved in carbohydrate metabolism and actin-related processes in a rat gene–environment model of depression. European Neuropsychopharmacology, 2011, 21, 545-562.	0.7	21
35	Escitalopram affects cytoskeleton and synaptic plasticity pathways in a rat gene–environment interaction model of depression as revealed by proteomics. Part II: environmental challenge. International Journal of Neuropsychopharmacology, 2011, 14, 834-855.	2.1	26
36	A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes, Brain and Behavior, 2011, 10, 424-433.	2.2	66

#	Article	IF	Citations
37	Strain-specific outcomes of repeated social defeat and chronic fluoxetine treatment in the mouse. Pharmacology Biochemistry and Behavior, 2011, 97, 566-576.	2.9	40
38	Effect of the p38 MAPK inhibitor SB-239063 on Lipopolysaccharide-induced psychomotor retardation and peripheral biomarker alterations in rats. European Journal of Pharmacology, 2011, 661, 49-56.	3.5	11
39	Proteome Effects of Antidepressant Medications. Advances in Neurobiology, 2011, , 399-441.	1.8	O
40	Early-life stress and antidepressants modulate peripheral biomarkers in a gene–environment rat model of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1037-1048.	4.8	78
41	Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours. PLoS ONE, 2010, 5, e12596.	2.5	33
42	Circadian profile of peripheral hormone levels in Sprague-Dawley rats and in common marmosets (Callithrix jacchus). In Vivo, 2010, 24, 827-36.	1.3	26
43	Alterations of behavioral and endocrinological reactivity induced by 3 brief social defeats in rats: Relevance to human psychopathology. Psychoneuroendocrinology, 2009, 34, 1405-1416.	2.7	33
44	Serum proteomic analysis during nicotine selfâ€administration, extinction and relapse in rats. Electrophoresis, 2008, 29, 1525-1533.	2.4	10
45	Differential behavioral, physiological, and hormonal sensitivity to LPS challenge in rats. International Journal of Interferon, Cytokine and Mediator Research, 2008, Volume 1, 1-13.	1.1	19
46	Social defeat-induced contextual conditioning differentially imprints behavioral and adrenal reactivity: A time-course study in the rat. Physiology and Behavior, 2007, 92, 734-740.	2.1	29
47	Proteomic analysis of rat cortical neurons after fluoxetine treatment. Brain Research, 2007, 1135, 41-51.	2.2	33
48	S.04.01 Functional proteomic analysis of an animal model of depression combining genetic vulnerability and environmental stress. European Neuropsychopharmacology, 2006, 16, S169-S170.	0.7	1
49	P.2.d.007 Proteomic analysis of hippocampus and frontal cortex in a rat model of depression with gene-environment interaction and antidepressant treatment. European Neuropsychopharmacology, 2006, 16, S336-S337.	0.7	1
50	Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. European Neuropsychopharmacology, 2006, 16, 521-537.	0.7	56
51	Conditioning properties of social subordination in rats: Behavioral and biochemical correlates of anxiety. Hormones and Behavior, 2006, 50, 245-251.	2.1	38
52	Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience, 2006, 137, 1237-1246.	2.3	70
53	Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Research, 2006, 1067, 25-35.	2.2	50
54	Proteomic changes in rat serum, polymorphonuclear and mononuclear leukocytes after chronic nicotine administration. Proteomics, 2005, 5, 1382-1394.	2.2	16

#	Article	IF	Citations
55	Proteomic analysis of rat brain tissue: Comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis, 2002, 23, 4132-4141.	2.4	43
56	Quantitative analysis of two-dimensional gel-separated proteins using isotopically marked alkylating agents and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 1692-1698.	1.5	51
57	Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3–CA1 synapses. Nature Neuroscience, 2000, 3, 1107-1112.	14.8	204
58	Molecular mechanisms of the positive reinforcing effect of nicotine. Behavioural Pharmacology, 1999, 10, 587-596.	1.7	19
59	Differential expression of SAPK isoforms in the rat brain. An in situ hybridisation study in the adult rat brain and during post-natal development. Molecular Brain Research, 1998, 60, 57-68.	2.3	43
60	Localization of the messenger RNA for the c-Jun NH2-terminal kinase kinase in the adult and developing rat brain: an in situ hybridization study. Neuroscience, 1997, 80, 147-160.	2.3	22
61	Agonist Binding Properties for Recombinant Kappa Opioid Receptors Expressed in CHO-K1 Cells. Annals of the New York Academy of Sciences, 1997, 812, 203-204.	3.8	1
62	Estrogen regulation of prodynorphin gene expression in the rat adenohypophysis: effect of the antiestrogen tamoxifen Endocrinology, 1995, 136, 1589-1594.	2.8	16
63	CCB, a novel specific \hat{l}° opioid agonist, which discriminates between opioid and $\hat{l}f1$ recognition sites. Life Sciences, 1995, 57, 1487-1495.	4.3	13
64	Estrogen regulation of prodynorphin gene expression in the rat adenohypophysis: effect of the antiestrogen tamoxifen. Endocrinology, 1995, 136, 1589-1594.	2.8	7
65	CCB: A novel anologue of MPCB with high binding affinity and specific kappa opioid receptor agonist. Regulatory Peptides, 1994, 53, S31-S32.	1.9	1
66	Inhibition of proopiomelanocortin translation by an antisense oligodeoxynucleotide. Regulatory Peptides, 1994, 53, S141-S142.	1.9	0
67	Post-transcriptional inhibition of ornithine decarboxylase induction by zinc in a difluoromethylornithine resistant cell line. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 101-105.	2.4	4
68	Zinc is required for the expression of ornithine decarboxylase in a difluoromethylornithine-resistant cell line. Biochemical Journal, 1994, 299, 515-519.	3.7	12
69	Inhibition of proopiomelanocortin expression by an oligodeoxynucleotide complementary to beta-endorphin mRNA Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8072-8076.	7.1	30
70	Endogenous opioid system and atrial natriuretic factor in normotensive offspring of hypertensive parents at rest and during exercise test. Journal of Hypertension, 1994, 12, 1285???1290.	0.5	26
71	Ca2+ channel blocking activity of lacidipine and amlodipine in A7r5 vascular smooth muscle cells. European Journal of Pharmacology, 1993, 244, 139-144.	2.6	13
72	Prodynorphin mRNA expression in adult cultured rat ventricular cardiac myocytes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1172, 247-250.	2.4	21

#	Article	IF	CITATIONS
73	An antisense oligodeoxynucleotide inhibits proopiomelanocortin translation in AtT-20 cell line. Pharmacological Research, 1992, 26, 40.	7.1	O