
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc finger RNA binding protein 2 (ZFR2) is not required for male fertility in the mouse. Developmental Biology, 2022, 489, 55-55.	0.9	1
2	DDB1- and CUL4-associated factor 12-like protein 1 (Dcaf12l1) is not essential for male fertility in mice. Developmental Biology, 2022, 490, 66-72.	0.9	1
3	LipidFinder 2.0: advanced informatics pipeline for lipidomics discovery applications. Bioinformatics, 2021, 37, 1478-1479.	1.8	8
4	The Sertoli cell expressed gene secerninâ€1 (<i>Scrn1</i>) is dispensable for male fertility in the mouse. Developmental Dynamics, 2021, 250, 922-931.	0.8	12
5	CRISPs Function to Boost Sperm Power Output and Motility. Frontiers in Cell and Developmental Biology, 2021, 9, 693258.	1.8	7
6	HENMT1 is involved in the maintenance of normal female fertility in the mouse. Molecular Human Reproduction, 2021, 27, .	1.3	2
7	KATNB1 is a master regulator of multiple katanin enzymes in male meiosis and haploid germ cell development. Development (Cambridge), 2021, 148, .	1.2	15
8	Expression and purification of recombinant mouse CRISP4 using a baculovirus system. Protein Expression and Purification, 2020, 167, 105543.	0.6	4
9	Programmed Cell Death 2-Like (Pdcd2l) Is Required for Mouse Embryonic Development. G3: Genes, Genomes, Genetics, 2020, 10, 4449-4457.	0.8	2
10	CRISP3 expression drives prostate cancer invasion and progression. Endocrine-Related Cancer, 2020, 27, 415-430.	1.6	14
11	CBE1 is a manchette and mitochondria associated protein with a potential role in somatic cell proliferation. Endocrinology, 2019, 160, 2573-2586.	1.4	5
12	GLIPR1L1 is an IZUMO-binding protein required for optimal fertilization in the mouse. BMC Biology, 2019, 17, 86.	1.7	20
13	CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology, 2019, 160, 915-924.	1.4	43
14	An optimised STAPUT method for the purification of mouse spermatocyte and spermatid populations. Molecular Human Reproduction, 2019, 25, 675-683.	1.3	11
15	Abstract 155: Cysteine-rich secretory protein 3 expression leads to invasive prostate cancer by modulating cell motility. , 2019, , .		0
16	Epididymal cysteine-rich secretory proteins are required for epididymal sperm maturation and optimal sperm function. Molecular Human Reproduction, 2018, 24, 111-122.	1.3	30
17	LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB Journal, 2017, 31, 1141-1152.	0.2	24
18	PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Scientific Reports, 2017, 7, 5317.	1.6	24

#	Article	IF	CITATIONS
19	In vivo evidence that RBM5 is a tumour suppressor in the lung. Scientific Reports, 2017, 7, 16323.	1.6	29
20	Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genetics, 2017, 13, e1007078.	1.5	48
21	LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets. JCI Insight, 2017, 2, e91634.	2.3	32
22	Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation. Cell Metabolism, 2016, 23, 930-944.	7.2	150
23	RABL2 Is Required for Hepatic Fatty Acid Homeostasis and Its Dysfunction Leads to Steatosis and a Diabetes-Like State. Endocrinology, 2016, 157, 4732-4743.	1.4	16
24	LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility. PLoS Genetics, 2015, 11, e1005090.	1.5	59
25	Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteins during spermatogenesis. Spermatogenesis, 2015, 5, e979061.	0.8	11
26	RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. PLoS Genetics, 2013, 9, e1003628.	1.5	68
27	Loss of GGN Leads to Pre-Implantation Embryonic Lethality and Compromised Male Meiotic DNA Double Strand Break Repair in the Mouse. PLoS ONE, 2013, 8, e56955.	1.1	14
28	Glucocorticoid-Induced Leucine Zipper (GILZ) Regulates Testicular FOXO1 Activity and Spermatogonial Stem Cell (SSC) Function. PLoS ONE, 2013, 8, e59149.	1.1	29
29	An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production. PLoS Genetics, 2012, 8, e1002698.	1.5	89
30	RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly. PLoS Genetics, 2012, 8, e1002969.	1.5	72
31	Progesterone stimulates expression of follistatin splice variants Fst288 and Fst315 in the mouse uterus. Reproductive BioMedicine Online, 2012, 24, 364-374.	1.1	4
32	Optimization of the expression of recombinant human activin A in the yeast <i>Pichia pastoris</i> . Biotechnology Progress, 2010, 26, 372-383.	1.3	10
33	Activin A regulates trophoblast cell adhesive properties: implications for implantation failure in women with endometriosis-associated infertility. Human Reproduction, 2010, 25, 1767-1774.	0.4	29
34	Glioma Pathogenesis-Related 1-Like 1 Is Testis Enriched, Dynamically Modified, and Redistributed during Male Germ Cell Maturation and Has a Potential Role in Sperm-Oocyte Binding. Endocrinology, 2010, 151, 2331-2342.	1.4	52
35	A novel protein, sperm head and tail associated protein (SHTAP), interacts with cysteineâ€rich secretory protein 2 (CRISP2) during spermatogenesis in the mouse. Biology of the Cell, 2010, 102, 93-106.	0.7	18
36	Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice. Reproduction, 2008, 136, 345-359.	1.1	114

#	Article	IF	CITATIONS
37	Female Infertility and Disrupted Angiogenesis Are Actions of Specific Follistatin Isoforms. Molecular Endocrinology, 2008, 22, 415-429.	3.7	38
38	Prevention of cachexia-like syndrome development and reduction of tumor progression in inhibin-deficient mice following administration of a chimeric activin receptor type II-murine Fc protein. Molecular Human Reproduction, 2007, 13, 675-683.	1.3	63
39	SMAD3 Regulates Gonadal Tumorigenesis. Molecular Endocrinology, 2007, 21, 2472-2486.	3.7	76
40	SEXUALLY DIMORPHIC FUNCTIONS OF SMAD3 IN GONADAL TUMORIGENESIS. Biology of Reproduction, 2007, 77, 82-82.	1.2	0
41	Activin A concentrations in human cerebrospinal fluid are age-dependent and elevated in meningitis. Journal of the Neurological Sciences, 2006, 250, 50-57.	0.3	32
42	Follistatin is a candidate endogenous negative regulator of activin A in experimental allergic asthma. Clinical and Experimental Allergy, 2006, 36, 941-950.	1.4	49
43	The relationship between immunosuppressive activity and immunoregulatory cytokines in seminal plasma: Influence of sperm autoimmunity and seminal leukocytes. Journal of Reproductive Immunology, 2006, 71, 57-74.	0.8	29
44	Regulated production of activin A and inhibin B throughout the cycle of the seminiferous epithelium in the rat. Journal of Endocrinology, 2006, 190, 331-340.	1.2	39
45	A repository of ENU mutant mouse lines and their potential for male fertility research. Molecular Human Reproduction, 2005, 11, 871-880.	1.3	18
46	Effects of age and pregnancy on the circulatory activin response of sheep to acute inflammatory challenge by lipopolysaccharide. Journal of Endocrinology, 2005, 185, 139-149.	1.2	28
47	Reciprocal regulation of activin A and inhibin B by interleukin-1 (IL-1) and follicle-stimulating hormone (FSH) in rat Sertoli cells in vitro. Journal of Endocrinology, 2005, 185, 99-110.	1.2	52
48	Regulation of activin A and inhibin B secretion by inflammatory mediators in adult rat Sertoli cell cultures. Journal of Endocrinology, 2005, 187, 125-134.	1.2	44
49	Inhibins in Normal Male Physiology. Seminars in Reproductive Medicine, 2004, 22, 177-185.	0.5	82
50	Changes in Circulating and Testicular Levels of Inhibin A and B and Activin A During Postnatal Development in the Rat. Endocrinology, 2004, 145, 3532-3541.	1.4	91
51	Hypoxia induced activin secretion by the fetoplacental unit: differential responses related to gestation. BJOG: an International Journal of Obstetrics and Gynaecology, 2004, 111, 1346-1352.	1.1	9
52	Increased activin levels in cerebrospinal fluid of rabbits with bacterial meningitis are associated with activation of microglia. Journal of Neurochemistry, 2004, 86, 238-245.	2.1	42
53	The role of activin, follistatin and inhibin in testicular physiology. Molecular and Cellular Endocrinology, 2004, 225, 57-64.	1.6	87
54	Effect of graded hypoxia on activin A, prostaglandin E2 and cortisol levels in the late-pregnant sheep. Reproduction, Fertility and Development, 2004, 16, 625.	0.1	10

#	Article	IF	CITATIONS
55	Proliferative Phase Sertoli Cells Display a Developmentally Regulated Response to Activin in Vitro. Endocrinology, 2003, 144, 474-483.	1.4	81
56	Activin βC-Subunit Heterodimers Provide a New Mechanism of Regulating Activin Levels in the Prostate. Endocrinology, 2003, 144, 4410-4419.	1.4	63
57	Programming Effects of Short Prenatal Exposure to Dexamethasone in Sheep. Hypertension, 2002, 40, 729-734.	1.3	182
58	Physiological and regulatory roles of activin A in late pregnancy. Molecular and Cellular Endocrinology, 2001, 180, 131-138.	1.6	13
59	Maternal serum total activin A and follistatin in pregnancy and parturition. BJOG: an International Journal of Obstetrics and Gynaecology, 2000, 107, 995-1000.	1.1	48
60	Maternal serum inhibin A concentrations in early pregnancy after IVF and embryo transfer reflect the corpus luteum contribution and pregnancy outcome. Human Reproduction, 2000, 15, 2028-2032.	0.4	36
61	Circulating Immunoreactive Inhibin, Gonadotropin, and Prolactin Levels during Pregnancy, Lactation, and Postweaning Estrous Cycle in the Rat. Biology of Reproduction, 1991, 44, 6-12.	1.2	21
62	Concentrations of immunoactive inhibin in serum during human pregnancy: evidence for an ovarian contribution. Reproduction, Fertility and Development, 1991, 3, 671.	0.1	24