
M Luz Calle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076239/publications.pdf Version: 2024-02-01

M LUZ CALLE

#	Article	IF	CITATIONS
1	Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell, 2016, 30, 27-42.	16.8	486
2	Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine, 2016, 5, 135-146.	6.1	328
3	Letter to the Editor: Stability of Random Forest importance measures. Briefings in Bioinformatics, 2011, 12, 86-89.	6.5	285
4	Balances: a New Perspective for Microbiome Analysis. MSystems, 2018, 3, .	3.8	188
5	Statistical Analysis of Metagenomics Data. Genomics and Informatics, 2019, 17, e6.	0.8	166
6	AUC-RF: A New Strategy for Genomic Profiling with Random Forest. Human Heredity, 2011, 72, 121-132.	0.8	122
7	Tutorial on methods for interval-censored data and their implementation in R. Statistical Modelling, 2009, 9, 259-297.	1.1	96
8	mbmdr: an R package for exploring gene–gene interactions associated with binary or quantitative traits. Bioinformatics, 2010, 26, 2198-2199.	4.1	90
9	Challenges in the Integration of Omics and Non-Omics Data. Genes, 2019, 10, 238.	2.4	86
10	Improving strategies for detecting genetic patterns of disease susceptibility in association studies. Statistics in Medicine, 2008, 27, 6532-6546.	1.6	81
11	Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers. Scientific Reports, 2017, 7, 6269.	3.3	79
12	Antiretroviral therapy interruption guided by CD4 cell counts and plasma HIV-1 RNA levels in chronically HIV-1-infected patients. Aids, 2007, 21, 169-178.	2.2	74
13	Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case-control data in the presence of noise. Annals of Human Genetics, 2011, 75, 78-89.	0.8	69
14	Genetic Susceptibility to Distinct Bladder Cancer Subphenotypes. European Urology, 2010, 57, 283-292.	1.9	63
15	Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunology, 2019, 12, 232-246.	6.0	56
16	Variable selection in microbiome compositional data analysis. NAR Genomics and Bioinformatics, 2020, 2, Iqaa029.	3.2	49
17	FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals. PLoS ONE, 2010, 5, e10304.	2.5	48
18	Risk Prediction Scores for Recurrence and Progression of Non-Muscle Invasive Bladder Cancer: An International Validation in Primary Tumours. PLoS ONE, 2014, 9, e96849.	2.5	46

M LUZ CALLE

#	Article	IF	CITATIONS
19	Interval censoring: Model characterizations for the validity of the simplified likelihood. Canadian Journal of Statistics, 2004, 32, 315-326.	0.9	41
20	Frequentist and Bayesian approaches for interval-censored data. Statistical Papers, 2004, 45, 139-173.	1.2	41
21	Number of consumers necessary for shelf life estimations based on survival analysis statistics. Food Quality and Preference, 2007, 18, 771-775.	4.6	32
22	An efficient algorithm to perform multiple testing in epistasis screening. BMC Bioinformatics, 2013, 14, 138.	2.6	29
23	Bayesian survival analysis modeling applied to sensory shelf life of foods. Food Quality and Preference, 2006, 17, 307-312.	4.6	26
24	Methylation regulation of Antiviral host factors, Interferon Stimulated Genes (ISGs) and T-cell responses associated with natural HIV control. PLoS Pathogens, 2020, 16, e1008678.	4.7	25
25	Non-parametric estimation with doubly censored data. Journal of Applied Statistics, 1999, 26, 45-58.	1.3	23
26	Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk. PLoS ONE, 2013, 8, e83745.	2.5	21
27	Genetic Variation in the TP53 Pathway and Bladder Cancer Risk. A Comprehensive Analysis. PLoS ONE, 2014, 9, e89952.	2.5	18
28	Interval censoring: identifiability and the constant-sum property. Biometrika, 2007, 94, 61-70.	2.4	15
29	Nonparametric Bayesian estimation from interval-censored data using Monte Carlo methods. Journal of Statistical Planning and Inference, 2001, 98, 73-87.	0.6	14
30	Risk of HIV infection as a function of the duration of intravenous drug use: a non-parametric Bayesian approach. Statistics in Medicine, 2000, 19, 2641-2656.	1.6	12
31	Whole Genome Prediction of Bladder Cancer Risk With the Bayesian LASSO. Genetic Epidemiology, 2014, 38, 467-476.	1.3	11
32	A dynamic model for the risk of bladder cancer progression. Statistics in Medicine, 2012, 31, 287-300.	1.6	7
33	Skewed expression and up-regulation of the IL-12 and IL-18 receptors in resting and activated CD4 T cells from HIV-1-infected patients. Journal of Leukocyte Biology, 2007, 82, 72-78.	3.3	6
34	Impact of HLAâ€ÐRB1 allele polymorphisms on control of HIV infection in a Peruvian MSM cohort. Hla, 2017, 90, 234-237.	0.6	6
35	A SEMIPARAMETRIC HIERARCHICAL METHOD FOR A REGRESSION MODEL WITH AN INTERVAL-CENSORED COVARIATE. Australian and New Zealand Journal of Statistics, 2005, 47, 351-364.	0.9	5
36	Efficient and Powerful Method for Combining P-Values in Genome-Wide Association Studies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 1100-1106.	3.0	4

M LUZ CALLE

#	Article	IF	CITATIONS
37	Global adaptive rank truncated product method for geneâ€set analysis in association studies. Biometrical Journal, 2014, 56, 901-911.	1.0	3
38	TL1A–DR3 Plasma Levels Are Predictive of HIV-1 Disease Control, and DR3 Costimulation Boosts HIV-1–Specific T Cell Responses. Journal of Immunology, 2020, 205, 3348-3357.	0.8	3
39	A Sampling-Based Chi-Squared Test for Interval-Censored Data. , 2008, , 295-306.		3
40	Kernel-Based Measure of Variable Importance for Genetic Association Studies. International Journal of Biostatistics, 2017, 13, .	0.7	1
41	Obesity status and obesity-associated gut dysbiosis effects on hypothalamic structural covariance. International Journal of Obesity, 2021, , .	3.4	1
42	Dynamic prediction methods in the BC2001 clinical trial. Trials, 2015, 16, .	1.6	0
43	Statistical Challenges for Human Microbiome Analysis. Trends in Mathematics, 2017, , 47-51.	0.1	0
44	Prognostic Factors and Prediction of Residual Survival for Hospitalized Elderly Patients. , 2007, , 167-178.		0