
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076101/publications.pdf Version: 2024-02-01

CHANCYIN FAN

#	Article	IF	CITATIONS
1	Ultrafast, dry microwave-assisted surface property modulations to boost carbon stabilized Ru nanocatalyst for catalytic hydrogen evolution. Fuel, 2022, 309, 122203.	3.4	40
2	Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 433, 133648.	6.6	73
3	Steam pretreatment-mediated catalytic activity modulation for ammonia borane hydrolysis over ruthenium nanoclusters on nitrogen/oxygen-rich carbon nanotubes. Applied Surface Science, 2022, 579, 152158.	3.1	36
4	Alkaline ultrasonic irradiation-mediated boosted H2 production over O/N-rich porous carbon anchored Ru nanoclusters. Journal of Colloid and Interface Science, 2022, 612, 57-65.	5.0	37
5	Synergistic catalytic hydrolysis of ammonia borane to release hydrogen over AgCo@CN. New Journal of Chemistry, 2022, 46, 4710-4714.	1.4	4
6	Cobalt with porous carbon architecture: Towards of 4-nitrophenol degradation and reduction. Separation and Purification Technology, 2022, 288, 120595.	3.9	29
7	Oxygen vacancies and morphology engineered Co3O4 anchored Ru nanoparticles as efficient catalysts for ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2022, 47, 7793-7801.	3.8	18
8	Facile fabrication of surface vulcanized Co-Fe spinel oxide nanoparticles toward efficient 4-nitrophenol destruction. Journal of Hazardous Materials, 2022, 430, 128433.	6.5	45
9	Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N,O-rich carbon and alkaline ultrasonic irradiation. Inorganic Chemistry Frontiers, 2022, 9, 2204-2212.	3.0	13
10	Facile chemical blowing synthesis of interconnected N-doped carbon nanosheets coupled with Co3O4 nanoparticles as superior peroxymonosulfate activators for p-nitrophenol destruction: Mechanisms and degradation pathways. Applied Surface Science, 2022, 593, 153244.	3.1	21
11	Restructuring morphology and surface-electronic-structure of Pt-Co3O4-δ-carbon toward ultra-highly efficient hydrogen production. Fuel, 2022, 319, 123616.	3.4	15
12	Void confinement and doping-modulation of IrNi alloy nanoparticles on hollow carbon spheres for efficient hydrogen oxidation/evolution reactions. Fuel, 2022, 319, 123637.	3.4	11
13	Hierarchical porous cobalt/carbon hybrid anchored Ru-catalyzed ammonia-borane hydrolysis for efficient H2 release. Fuel, 2022, 321, 123982.	3.4	18
14	Low-temperature control over deposition of ultrafine Pd nanoparticles on porous carbon nanosheets for highly efficient dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2022, 912, 165076.	2.8	9
15	Carbon-nanosheet-driven spontaneous deposition of Au nanoparticles for efficient electrochemical utilizations toward H2O2 generation and detection. Chemical Engineering Journal, 2022, 445, 136586.	6.6	17
16	The simplest and ultrafast microwave-mediated solid-state construction of cobalt oxide/carbon hybrid as an efficient peroxymonosulfate activator for ciprofloxacin degradation. Separation and Purification Technology, 2022, 296, 121346.	3.9	8
17	Active site and adsorption behavior engineering of subsize PdNi nanoparticles for boosting electrocatalytic hydrodechlorination of 4-chlorophenol. Applied Surface Science, 2022, 600, 153988.	3.1	12
18	Oxygenated functional group-driven spontaneous fabrication of Pd nanoparticles decorated porous carbon nanosheets for electrocatalytic hydrodechlorination of 4-chlorophenol. Journal of Hazardous Materials, 2021, 408, 124456.	6.5	48

#	Article	IF	CITATIONS
19	Sustainable solid-state synthesis of uniformly distributed PdAg alloy nanoparticles for electrocatalytic hydrogen oxidation and evolution. Chinese Journal of Catalysis, 2021, 42, 251-258.	6.9	31
20	Mechanochemically assisted fabrication of ultrafine Pd nanoparticles on natural waste-derived nitrogen-doped porous carbon for the efficient formic acid decomposition. International Journal of Hydrogen Energy, 2021, 46, 656-665.	3.8	14
21	Synergetic enhancement of electrochemical H ₂ O ₂ detection in a nitrogen-doped carbon encapsulated FeCo alloy architecture. Analyst, The, 2021, 146, 971-978.	1.7	4
22	Carbon nanopore and anchoring site-assisted general construction of encapsulated metal (Rh, Ru, Ir) nanoclusters for highly efficient hydrogen evolution in pH-universal electrolytes and natural seawater. Green Chemistry, 2021, 23, 4551-4559.	4.6	33
23	Synergism of ultrafine RuCo alloy nanoparticles on graphite carbon nitride for an efficient ammonia borane hydrolysis. New Journal of Chemistry, 2021, 45, 14759-14764.	1.4	4
24	Facile construction of composition-tuned ruthenium-nickel nanoparticles on g-C3N4 for enhanced hydrolysis of ammonia borane without base additives. International Journal of Hydrogen Energy, 2021, 46, 11587-11596.	3.8	24
25	In Situ Hydrogen Activation Inspiring Efficient One-Pot Hydrogenation of Halogenated Nitrobenzenes over Ni–Co-Based Composites. Industrial & Engineering Chemistry Research, 2021, 60, 8312-8323.	1.8	10
26	Sustainable one-pot construction of oxygen-rich nitrogen-doped carbon nanosheets stabilized ultrafine Rh nanoparticles for efficient ammonia borane hydrolysis. Journal of Colloid and Interface Science, 2021, 594, 131-140.	5.0	59
27	Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane. Fuel, 2021, 297, 120750.	3.4	56
28	Hollow Hydrangeaâ€Like CoRu/Co Architecture as an Excellent Electrocatalyst for Oxygen Evolution. ChemSusChem, 2021, 14, 3959-3966.	3.6	7
29	Facile, general and environmental-friendly fabrication of O/N-codoped porous carbon as a universal matrix for efficient hydrogen evolution electrocatalysts. Chemical Engineering Journal, 2021, 420, 130483.	6.6	32
30	Bamboo fungus-derived magnetic porous carbon encapsulated nickel stabilized Rh nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 34229-34238.	3.8	10
31	Surface property and spatial confinement engineering for achieving Ru nanoclusters on O/N-doped hollow carbon towards enhanced hydrogen production. Fuel, 2021, 306, 121722.	3.4	13
32	Direct transformation of bulk cobalt foam into cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for peroxymonosulfate activation toward rhodamine B degradation. Separation and Purification Technology, 2021, 277, 119441.	3.9	50
33	Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. Nanoscale, 2021, 13, 10044-10050.	2.8	18
34	Amino-group and space-confinement assisted synthesis of small and well-defined Rh nanoparticles as efficient catalysts toward ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2021, 46, 2204-2212.	3.8	24
35	An Ultrahigh Performance Enzymeâ€Free Electrochemical H 2 O 2 Sensor Based on Carbon Nanopores Encapsulated Ultrasmall Cobalt Oxide Nanoparticles. ChemistrySelect, 2021, 6, 11121-11129.	0.7	4
36	Salt template-assisted <i>in situ</i> construction of Ru nanoclusters and porous carbon: excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chemistry, 2020, 22, 835-842.	4.6	135

#	Article	IF	CITATIONS
37	Ultrasmall rhodium nanoclusters anchored on nitrogen-doped carbon nanotubes with embedded nickel nanoparticles as magnetically recyclable catalysts for efficient ammonia-borane hydrolysis. International Journal of Hydrogen Energy, 2020, 45, 1640-1648.	3.8	21
38	Pt nanoparticles on Ti ₃ C ₂ T _x -based MXenes as efficient catalysts for the selective hydrogenation of nitroaromatic compounds to amines. Dalton Transactions, 2020, 49, 14914-14920.	1.6	22
39	Smart construction of oxidized-Ti3C2TX stabilized Rh nanoparticles for remarkable improving the catalytic performance for ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2020, 45, 28812-28820.	3.8	26
40	Anchoring and space-confinement effects to synthesize ultrasmall Pd nanoparticles for efficient ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2020, 45, 27244-27253.	3.8	58
41	Air-mediated construction of O, N-rich carbon: An efficient support of palladium nanoparticles toward catalytic formic acid dehydrogenation and 4-nitrophenol reduction. International Journal of Hydrogen Energy, 2020, 45, 29034-29045.	3.8	19
42	Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Nanomaterials, 2020, 10, 1612.	1.9	23
43	Oxygenated functional group-engaged electroless deposition of ligand-free silver nanoparticles on porous carbon for efficient electrochemical non-enzymatic H ₂ O ₂ detection. Nanoscale, 2020, 12, 24495-24502.	2.8	13
44	Facile Fabrication of Rhodium/Nanodiamond Hybrid as Advanced Catalyst toward Hydrogen Production from Ammonia–Borane. Catalysts, 2020, 10, 1037.	1.6	10
45	Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 1791-1811.	6.9	80
46	Bagasseâ€derived Carbonâ€supported Ru nanoparticles as Catalyst for Efficient Dehydrogenation of Ammonia Borane. ChemNanoMat, 2020, 6, 1251-1259.	1.5	25
47	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	5.2	166
48	Spatially localized fabrication of uniform Rh nanoclusters on nanosheet-assembled hierarchical carbon architectures as excellent electrocatalysts for boosting alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 8118-8125.	3.8	14
49	Flexible Active-Site Engineering of Monometallic Co-Layered Double Hydroxides for Achieving High-Performance Bifunctional Electrocatalyst toward Oxygen Evolution and H ₂ O ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 12919-12929.	4.0	29
50	A simple and straightforward strategy for synthesis of N,P co-doped porous carbon: an efficient support for Rh nanoparticles for dehydrogenation of ammonia borane and catalytic application. Nanoscale Advances, 2020, 2, 1685-1693.	2.2	19
51	Efficient Hydrogen Generation from the NaBH ₄ Hydrolysis by Cobalt-Based Catalysts: Positive Roles of Sulfur-Containing Salts. ACS Applied Materials & Interfaces, 2020, 12, 9376-9386.	4.0	83
52	Synergistic catalysis of Pd–Ni(OH)2 hybrid anchored on porous carbon for hydrogen evolution from the dehydrogenation of formic acid. International Journal of Hydrogen Energy, 2020, 45, 12849-12858.	3.8	20
53	Sustainable and scalable in-situ fabrication of Au nanoparticles and Fe3O4 hybrids as highly efficient electrocatalysts for the enzyme-free sensing of H2O2 in neutral and basic solutions. Sensors and Actuators B: Chemical, 2020, 314, 128067.	4.0	28
54	Ultrasmall Rh nanoparticles decorated on carbon nanotubes with encapsulated Ni nanoparticles as excellent and pH-universal electrocatalysts for hydrogen evolution reaction. Applied Surface Science, 2019, 495, 143569.	3.1	14

#	Article	IF	CITATIONS
55	Facile and eco-friendly synthesis of porous carbon nanosheets as ideal platform for stabilizing rhodium nanoparticles in efficient hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2019, 44, 21527-21535.	3.8	25
56	Nanosized Iron Oxide Uniformly Distributed on 3D Carbon Nanosheets: Efficient Adsorbent for Methylene Blue. Applied Sciences (Switzerland), 2019, 9, 2898.	1.3	1
57	Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 25632-25641.	3.8	15
58	Roomâ€Temperature Sustainable Synthesis of Selected Platinum Group Metal (PGM = Ir, Rh, and Ru) Nanocatalysts Wellâ€Dispersed on Porous Carbon for Efficient Hydrogen Evolution and Oxidation. Small, 2019, 15, e1903057.	5.2	93
59	Monodispersed and well-dispersed RhxP nanoparticles decorated on phosphorus-doped nitride carbon for efficient alkaline and acidic hydrogen evolution. Applied Surface Science, 2019, 489, 796-801.	3.1	8
60	Efficient hydrogen evolution from ammonia borane hydrolysis with Rh decorated on phosphorus-doped carbon. International Journal of Hydrogen Energy, 2019, 44, 16548-16556.	3.8	38
61	Electrochemical performance of ruthenium nanoparticles decorated on nitride carbon for non-enzymatic detection of hydrogen peroxide. Analyst, The, 2019, 144, 6706-6711.	1.7	16
62	Ultrahigh Catalytic Activity of <scp>l</scp> â€Prolineâ€Functionalized Rh Nanoparticles for Methanolysis of Ammonia Borane. ChemSusChem, 2019, 12, 535-541.	3.6	48
63	Nitrogen-Doped Carbon-Stabilized Ru Nanoclusters as Excellent Catalysts for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 1178-1184.	3.2	65
64	Ruthenium coordinated with triphenylphosphine-hyper-crosslinked polymer: An efficient catalyst for hydrogen evolution reaction and hydrolysis of ammonia borane. Applied Surface Science, 2019, 466, 193-201.	3.1	48
65	Carbon-supported small Rh nanoparticles prepared with sodium citrate: Toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2018, 43, 2718-2725.	3.8	65
66	Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane. Dalton Transactions, 2018, 47, 2561-2567.	1.6	60
67	Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions. International Journal of Hydrogen Energy, 2018, 43, 7038-7045.	3.8	66
68	3D nanoporous Ni/V ₂ O ₃ hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 21452-21457.	5.2	38
69	Catalytically active rhodium nanoparticles stabilized by nitrogen doped carbon for the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 22273-22280.	3.8	30
70	Scalable Solid‣tate Synthesis of Highly Dispersed Uncapped Metal (Rh, Ru, Ir) Nanoparticles for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801698.	10.2	149
71	Ruthenium nanoclusters distributed on phosphorus-doped carbon derived from hypercrosslinked polymer networks for highly efficient hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2018, 43, 18253-18260.	3.8	28
72	Ultrafine and highly dispersed Ru nanoparticles supported on nitrogen-doped carbon nanosheets: Efficient catalysts for ammonia borane hydrolysis. Applied Surface Science, 2018, 455, 326-332.	3.1	71

#	Article	IF	CITATIONS
73	Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 14380-14386.	5.2	92
74	Palladium Supported on Titanium Carbide: A Highly Efficient, Durable, and Recyclable Bifunctional Catalyst for the Transformation of 4-Chlorophenol and 4-Nitrophenol. Nanomaterials, 2018, 8, 141.	1.9	22
75	UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene. Nanomaterials, 2018, 8, 240.	1.9	7
76	In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen. Nanomaterials, 2018, 8, 280.	1.9	23
77	Towards Highâ€Efficiency Hydrogen Production through in situ Formation of Wellâ€Dispersed Rhodium Nanoclusters. ChemSusChem, 2018, 11, 3253-3258.	3.6	57
78	Well-Defined Ru Nanoclusters Anchored on Carbon: Facile Synthesis and High Electrochemical Activity toward Alkaline Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11487-11492.	3.2	60
79	Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 22340-22347.	4.0	43
80	Magnetic, recyclable Pt _y Co _{1â^'y} /Ti ₃ C ₂ X ₂ (X = O, F) catalyst: a facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane. New Journal of Chemistry, 2017, 41, 2793-2799.	1.4	61
81	Ruthenium nanoparticles supported on TiO2 (B) nanotubes: Effective catalysts in hydrogen evolution from the hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2017, 708, 270-277.	2.8	59
82	Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti 3 C 2 X 2 (X O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Applied Catalysis B: Environmental, 2017, 210, 462-469.	10.8	77
83	Tunable magnetic pole inversion in multiferroic BiFeO ₃ –DyFeO ₃ solid solution. Journal of Materials Chemistry C, 2017, 5, 4063-4067.	2.7	12
84	Encased Copper Boosts the Electrocatalytic Activity of N-Doped Carbon Nanotubes for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 36857-36864.	4.0	75
85	Alumina nanofiber-stabilized ruthenium nanoparticles: Highly efficient catalytic materials for hydrogen evolution from ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2017, 42, 24142-24149.	3.8	32
86	Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2016, 41, 1542-1549.	3.8	89
87	Convenient preparation of Pd/RGO catalyst for the efficient hydrodechlorination of various chlorophenols. New Journal of Chemistry, 2016, 40, 372-376.	1.4	11
88	Highâ€Indexed Pt ₃ Fe Nanocatalysts and Their Enhanced Catalytic Performance in Dual Organic Reactions. ChemNanoMat, 2015, 1, 331-337.	1.5	14
89	Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 9217-9224.	3.8	76
90	Ultrafast hydrogen generation from the hydrolysis of ammonia borane catalyzed by highly efficient bimetallic RuNi nanoparticles stabilized on Ti3C2X2 (XÂ=ÂOH and/or F). International Journal of Hydrogen Energy, 2015, 40, 3883-3891.	3.8	55

#	Article	IF	CITATIONS
91	Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride. International Journal of Hydrogen Energy, 2014, 39, 19982-19989.	3.8	71
92	Effective hydrodechlorination of 4-chlorophenol catalysed by magnetic palladium/reduced graphene oxide under mild conditions. RSC Advances, 2014, 4, 25440-25446.	1.7	8
93	Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2014, 39, 14927-14934.	3.8	116
94	Pt–NH ₂ –Fe ₃ O ₄ Catalyst with Excellent Catalytic Performance for Hydrogenation of Nitroarenes in Aqueous Medium. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 967-973.	0.6	8
95	Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions. Journal of Hazardous Materials, 2014, 274, 32-40.	6.5	35
96	One-pot synthesis of aluminum oxyhydroxide matrix-entrapped Pt nanoparticles as an excellent catalyst for the hydrogenation of nitrobenzene. RSC Advances, 2014, 4, 10997-11002.	1.7	17
97	Aqueous phase catalytic hydrodechlorination of 4-chlorophenol over palladium deposited on reduced graphene oxide. Catalysis Communications, 2014, 46, 219-223.	1.6	24
98	Insitu synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Nanoscale, 2013, 5, 6819.	2.8	53
99	Highly Efficient Hydrogenation of Methyl Propionate to Propanol over Hydrous Zirconia Supported Ruthenium. Chinese Journal of Chemistry, 2011, 29, 229-236.	2.6	8