Paul D. Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2075970/publications.pdf Version: 2024-02-01

DALLI D ADAMS

#	Article	IF	CITATIONS
1	<i>PHENIX</i> : a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 213-221.	2.5	20,564
2	<i>Phaser</i> crystallographic software. Journal of Applied Crystallography, 2007, 40, 658-674.	1.9	17,782
3	Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 905-921.	2.5	14,711
4	Towards automated crystallographic structure refinement with <i>phenix.refine</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 352-367.	2.5	4,573
5	Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in <i>Phenix</i> . Acta Crystallographica Section D: Structural Biology, 2019, 75, 861-877.	1.1	4,060
6	PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1948-1954.	2.5	3,979
7	Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373, 871-876.	6.0	2,843
8	MolProbity: More and better reference data for improved allâ€atom structure validation. Protein Science, 2018, 27, 293-315.	3.1	2,776
9	Real-space refinement in <i>PHENIX</i> for cryo-EM and crystallography. Acta Crystallographica Section D: Structural Biology, 2018, 74, 531-544.	1.1	2,065
10	lterative model building, structure refinement and density modification with the <i>PHENIX AutoBuild</i> wizard. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 61-69.	2.5	1,319
11	<i>electronic Ligand Builder and Optimization Workbench</i> (<i>eLBOW</i>): a tool for ligand coordinate and restraint generation. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1074-1080.	2.5	1,035
12	Structural Basis for Double-Stranded RNA Processing by Dicer. Science, 2006, 311, 195-198.	6.0	860
13	Decision-making in structure solution using Bayesian estimates of map quality: the <i>PHENIX AutoSol</i> wizard. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 582-601.	2.5	804
14	EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy. Nature Methods, 2015, 12, 943-946.	9.0	799
15	The Phenix software for automated determination of macromolecular structures. Methods, 2011, 55, 94-106.	1.9	764
16	Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5018-5023.	3.3	623
17	New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallographica Section D: Structural Biology, 2018, 74, 814-840.	1.1	575
18	Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallographica Section D: Structural Biology, 2017, 73, 148-157.	1.1	500

#	Article	IF	CITATIONS
19	<i>iotbx.cif</i> : a comprehensive CIF toolbox. Journal of Applied Crystallography, 2011, 44, 1259-1263.	1.9	487
20	Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31, 1039-1046.	9.4	411
21	A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure, 2011, 19, 1395-1412.	1.6	405
22	Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature, 2018, 563, 421-425.	13.7	386
23	Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature. Science, 2013, 340, 491-495.	6.0	378
24	SPARX, a new environment for Cryo-EM image processing. Journal of Structural Biology, 2007, 157, 47-55.	1.3	356
25	Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 2013, 19, 33-41.	3.6	343
26	Structure of photosystem II and substrate binding at room temperature. Nature, 2016, 540, 453-457.	13.7	323
27	Recent developments in thePHENIXsoftware for automated crystallographic structure determination. Journal of Synchrotron Radiation, 2004, 11, 53-55.	1.0	319
28	A dimerization motif for transmembrane α–helices. Nature Structural Biology, 1994, 1, 157-163.	9.7	294
29	TheComputational Crystallography Toolbox: crystallographic algorithms in a reusable software framework. Journal of Applied Crystallography, 2002, 35, 126-136.	1.9	262
30	Joint X-ray and neutron refinement with <i>phenix.refine</i> . Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1153-1163.	2.5	259
31	Modelling dynamics in protein crystal structures by ensemble refinement. ELife, 2012, 1, e00311.	2.8	248
32	Improvement of cryo-EM maps by density modification. Nature Methods, 2020, 17, 923-927.	9.0	243
33	Use of knowledge-based restraints in <i>phenix.refine</i> to improve macromolecular refinement at low resolution. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 381-390.	2.5	230
34	Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Ã resolution. Nature Structural and Molecular Biology, 1995, 2, 1083-1094.	3.6	219
35	Automated map sharpening by maximization of detail and connectivity. Acta Crystallographica Section D: Structural Biology, 2018, 74, 545-559.	1.1	218
36	<i>Phaser.MRage</i> : automated molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2276-2286.	2.5	216

#	Article	IF	CITATIONS
37	Substructure search procedures for macromolecular structures. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1966-1973.	2.5	214
38	Crystal structure of a bacterial ribonuclease P RNA. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13392-13397.	3.3	206
39	Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 2014, 5, 4371.	5.8	206
40	New tools for structure refinement in <i>PHENIX</i> . Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s15-s15.	0.3	205
41	Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nature Structural and Molecular Biology, 1995, 2, 154-162.	3.6	198
42	New applications of simulated annealing in X-ray crystallography and solution NMR. Structure, 1997, 5, 325-336.	1.6	197
43	Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel EMBO Journal, 1994, 13, 4757-4764.	3.5	175
44	Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nature Methods, 2013, 10, 1102-1104.	9.0	175
45	Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metabolic Engineering, 2012, 14, 653-660.	3.6	173
46	Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 2015, 6, e00326-15.	1.8	173
47	Targeted proteomics for metabolic pathway optimization: Application to terpene production. Metabolic Engineering, 2011, 13, 194-203.	3.6	169
48	Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1584-1587.	2.5	167
49	Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 515-524.	2.5	165
50	Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Molecular Biology International, 2014, 2014, 1-8.	1.7	160
51	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	1.6	159
52	FEM: feature-enhanced map. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 646-666.	2.5	157
53	Shining Light into Black Boxes. Science, 2012, 336, 159-160.	6.0	154
54	A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 850-855.	2.5	153

#	Article	IF	CITATIONS
55	Supramolecular Self-Assembled Chaos: Polyphenolic Lignin's Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules, 2010, 15, 8641-8688.	1.7	151
56	Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels, 2013, 6, 14.	6.2	151
57	Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. , 1996, 26, 257-261.		149
58	Robust indexing for automatic data collection. Journal of Applied Crystallography, 2004, 37, 399-409.	1.9	149
59	Untangling the sequence of events during the S ₂ → S ₃ transition in photosystem II and implications for the water oxidation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12624-12635.	3.3	149
60	Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9721-9726.	3.3	144
61	Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology, 2018, 14, 256-261.	3.9	143
62	Experimentally based orientational refinement of membrane protein models: a structure for the Influenza A M2 H + channel 1 1Edited by G. von Heijne. Journal of Molecular Biology, 1999, 286, 951-962.	2.0	141
63	Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 2014, 11, 545-548.	9.0	140
64	Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metabolic Engineering, 2015, 28, 123-133.	3.6	140
65	Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chemistry, 2011, 13, 2743.	4.6	139
66	Graphical tools for macromolecular crystallography in <i>PHENIX</i> . Journal of Applied Crystallography, 2012, 45, 581-586.	1.9	139
67	Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 567-573.	2.5	137
68	A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nature Methods, 2018, 15, 905-908.	9.0	137
69	phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. Journal of Structural and Functional Genomics, 2012, 13, 81-90.	1.2	131
70	Role of the Â-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO Journal, 2003, 22, 4877-4887.	3.5	130
71	Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Scientific Reports, 2015, 5, 11128.	1.6	125
72	Coupling of receptor conformation and ligand orientation determine graded activity. Nature Chemical Biology, 2010, 6, 837-843.	3.9	121

#	Article	IF	CITATIONS
73	Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19103-19107.	3.3	113
74	<i>phenix.model_vs_data</i> : a high-level tool for the calculation of crystallographic model and data statistics. Journal of Applied Crystallography, 2010, 43, 669-676.	1.9	112
75	Accurate model annotation of a near-atomic resolution cryo-EM map. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3103-3108.	3.3	111
76	Exploring the Structural Dynamics of the E.coli Chaperonin GroEL Using Translation-libration-screw Crystallographic Refinement of Intermediate States. Journal of Molecular Biology, 2004, 342, 229-245.	2.0	109
77	Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metabolic Engineering, 2018, 47, 60-72.	3.6	106
78	An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nature Communications, 2014, 5, 4808.	5.8	105
79	Comprehensive <i>in Vitro</i> Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synthetic Biology, 2017, 6, 139-147.	1.9	100
80	Automated ligand fitting by core-fragment fitting and extension into density. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 915-922.	2.5	98
81	Crystallographic model quality at a glance. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 297-300.	2.5	95
82	The protein structure initiative structural genomics knowledgebase. Nucleic Acids Research, 2009, 37, D365-D368.	6.5	94
83	Use of a New Label, 13Cî—»18O, in the Determination of a Structural Model of Phospholamban in a Lipid Bilayer. Spatial Restraints Resolve the Ambiguity Arising from Interpretations of Mutagenesis Data. Journal of Molecular Biology, 2000, 300, 677-685.	2.0	92
84	Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnology and Bioengineering, 2014, 111, 1648-1658.	1.7	89
85	The cryo-electron microscopy structure of human transcription factor IIH. Nature, 2017, 549, 414-417.	13.7	89
86	Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnology for Biofuels, 2012, 5, 54.	6.2	88
87	Advances, Interactions, and Future Developments in the CNS, Phenix, and Rosetta Structural Biology Software Systems. Annual Review of Biophysics, 2013, 42, 265-287.	4.5	88
88	High-resolution structure of RNase P protein from Thermotoga maritima. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7497-7502.	3.3	87
89	A Clobal Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure, 2020, 28, 1249-1258.e2.	1.6	86
90	Recent developments for the efficient crystallographic refinement of macromolecular structures. Current Opinion in Structural Biology, 1998, 8, 606-611.	2.6	83

#	Article	IF	CITATIONS
91	X-Ray Crystallographic and Kinetic Studies of Human Sorbitol Dehydrogenase. Structure, 2003, 11, 1071-1085.	1.6	83
92	Three Novel Rice Genes Closely Related to the ArabidopsisIRX9, IRX9L, and IRX14 Genes and Their Roles in Xylan Biosynthesis. Frontiers in Plant Science, 2013, 4, 83.	1.7	83
93	Surprises and pitfalls arising from (pseudo)symmetry. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 99-107.	2.5	81
94	<i>Web-Ice</i> : integrated data collection and analysis for macromolecular crystallography. Journal of Applied Crystallography, 2008, 41, 176-184.	1.9	81
95	A Versatile Microfluidic Device for Automating Synthetic Biology. ACS Synthetic Biology, 2015, 4, 1151-1164.	1.9	81
96	Production of jet fuel precursor monoterpenoids from engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 1703-1712.	1.7	81
97	Crystal Structures of the Rhodococcus Proteasome with and without its Pro-peptides: Implications for the Role of the Pro-peptide in Proteasome Assembly. Journal of Molecular Biology, 2004, 335, 233-245.	2.0	80
98	Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. Planta, 2009, 230, 589-597.	1.6	80
99	Identification of a Sphingolipid α-Glucuronosyltransferase That Is Essential for Pollen Function in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 3314-3325.	3.1	80
100	Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 625-634.	2.5	79
101	Analytics for Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 135.	2.0	79
102	Transmembrane signal transduction of the \hat{I} ±llb \hat{I}^2 3 integrin. Protein Science, 2009, 11, 1800-1812.	3.1	78
103	Phylogenomically Guided Identification of Industrially Relevant GH1 β-Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry. ACS Chemical Biology, 2014, 9, 2082-2091.	1.6	78
104	Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin. Plant and Cell Physiology, 2016, 57, 568-579.	1.5	78
105	Structure of a Three-Domain Sesquiterpene Synthase: A Prospective Target for Advanced Biofuels Production. Structure, 2011, 19, 1876-1884.	1.6	76
106	Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vλ6 proteins. Journal of Molecular Recognition, 2004, 17, 323-331.	1.1	73
107	Characterizing Strain Variation in Engineered E.Âcoli Using a Multi-Omics-Based Workflow. Cell Systems, 2016, 2, 335-346.	2.9	73
108	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nature Methods, 2021, 18, 156-164.	9.0	73

#	Article	IF	CITATIONS
109	Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nature Communications, 2021, 12, 6531.	5.8	73
110	A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab on A Chip, 2015, 15, 225-236.	3.1	70
111	Molecular Dynamics Applied to X-ray Structure Refinement. Accounts of Chemical Research, 2002, 35, 404-412.	7.6	68
112	Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12301-12306.	3.3	68
113	STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 157-179.	18.3	67
114	The plant glycosyltransferase clone collection for functional genomics. Plant Journal, 2014, 79, 517-529.	2.8	67
115	Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3248-3253.	3.3	66
116	Crystal Structures of a Group II Chaperonin Reveal the Open and Closed States Associated with the Protein Folding Cycle. Journal of Biological Chemistry, 2010, 285, 27958-27966.	1.6	66
117	Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of Structural Biology, 2010, 172, 372-379.	1.3	65
118	The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods. Journal of Structural and Functional Genomics, 2011, 12, 45-54.	1.2	65
119	Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnology for Biofuels, 2013, 6, 93.	6.2	63
120	A Droplet Microfluidic Platform for Automating Genetic Engineering. ACS Synthetic Biology, 2016, 5, 426-433.	1.9	63
121	Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. Plant Cell, 2015, 27, 1218-1227.	3.1	61
122	Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 597-610.	2.5	60
123	Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Bioresource Technology, 2012, 126, 156-161.	4.8	60
124	Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <i>Pseudomonas putida</i> Lysine Metabolism. MBio, 2019, 10, .	1.8	60
125	On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1194-1197.	2.5	59
126	Averaged kick maps: less noise, more signal…and probably less bias. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 921-931.	2.5	59

#	Article	IF	CITATIONS
127	Ligand identification using electron-density map correlations. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 101-107.	2.5	57
128	Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. MBio, 2018, 9, .	1.8	57
129	A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities. PLoS Computational Biology, 2014, 10, e1003827.	1.5	56
130	Understanding the impact of ionic liquid pretreatment on cellulose and lignin via thermochemical analysis. Biomass and Bioenergy, 2013, 54, 276-283.	2.9	55
131	Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17887-17892.	3.3	55
132	Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metabolic Engineering, 2014, 26, 111-118.	3.6	55
133	Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microbial Cell Factories, 2012, 11, 79.	1.9	53
134	Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14324-14329.	3.3	50
135	Automatic multiple-zone rigid-body refinement with a large convergence radius. Journal of Applied Crystallography, 2009, 42, 607-615.	1.9	49
136	Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Analytical Biochemistry, 2014, 448, 14-22.	1.1	49
137	Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnology for Biofuels, 2015, 8, 220.	6.2	49
138	On the handling of atomic anisotropic displacement parameters. Journal of Applied Crystallography, 2002, 35, 477-480.	1.9	48
139	Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization. BMC Biotechnology, 2012, 12, 38.	1.7	48
140	Numerically stable algorithms for the computation of reduced unit cells. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 1-6.	0.3	47
141	Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nature Chemical Biology, 2018, 14, 451-457.	3.9	47
142	<i>TLS</i> from fundamentals to practice. Crystallography Reviews, 2013, 19, 230-270.	0.4	46
143	Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metabolic Engineering, 2019, 56, 85-96.	3.6	46
144	Announcing mandatory submission of PDBx/mmClF format files for crystallographic depositions to the Protein Data Bank (PDB). Acta Crystallographica Section D: Structural Biology, 2019, 75, 451-454.	1.1	46

#	Article	IF	CITATIONS
145	Novel bacterial clade reveals origin of form I Rubisco. Nature Plants, 2020, 6, 1158-1166.	4.7	46
146	A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins. Metabolic Engineering, 2014, 26, 48-56.	3.6	45
147	The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization. ACS Synthetic Biology, 2017, 6, 2248-2259.	1.9	45
148	Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute. ACS Chemical Biology, 2008, 3, 17-20.	1.6	44
149	Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research. Frontiers in Bioengineering and Biotechnology, 2015, 3, 44.	2.0	44
150	Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2016, 291, 10228-10238.	1.6	44
151	On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening. Lab on A Chip, 2017, 17, 323-331.	3.1	44
152	Intensity statistics in the presence of translational noncrystallographic symmetry. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 176-183.	2.5	43
153	Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnology for Biofuels, 2018, 11, 285.	6.2	43
154	Automating crystallographic structure solution and refinement of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 144-154.	2.5	43
155	Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2010, 395, 521-523.	1.0	42
156	Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab on A Chip, 2013, 13, 1817.	3.1	42
157	From Soil to Structure, a Novel Dimeric β-Glucosidase Belonging to Glycoside Hydrolase Family 3 Isolated from Compost Using Metagenomic Analysis. Journal of Biological Chemistry, 2013, 288, 14985-14992.	1.6	42
158	Biochemical and Structural Studies of NADH-Dependent FabG Used To Increase the Bacterial Production of Fatty Acids under Anaerobic Conditions. Applied and Environmental Microbiology, 2014, 80, 497-505.	1.4	42
159	<i>O</i> -/ <i>N</i> -/ <i>S</i> -Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catalysis, 2021, 11, 1810-1815.	5.5	42
160	Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1104-1114.	2.5	40
161	NMR Exchange Format: a unified and open standard for representation of NMR restraint data. Nature Structural and Molecular Biology, 2015, 22, 433-434.	3.6	40
162	No observable conformational changes in PSII. Nature, 2016, 533, E1-E2.	13.7	40

#	Article	IF	CITATIONS
163	Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. Journal of Biological Chemistry, 2016, 291, 5234-5246.	1.6	40
164	Tracing Determinants of Dual Substrate Specificity in Glycoside Hydrolase Family 5. Journal of Biological Chemistry, 2012, 287, 25335-25343.	1.6	39
165	Toward industrial production of isoprenoids in <i>Escherichia coli</i> : Lessons learned from CRISPR as9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 2018, 115, 1000-1013.	1.7	39
166	A new default restraint library for the protein backbone in <i>Phenix</i> : a conformation-dependent geometry goes mainstream. Acta Crystallographica Section D: Structural Biology, 2016, 72, 176-179.	1.1	39
167	Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3299-3309.	2.5	38
168	A bacterial pioneer produces cellulase complexes that persist through community succession. Nature Microbiology, 2018, 3, 99-107.	5.9	38
169	Improving the Accuracy of Macromolecular Structure Refinement at 7ÂÃ Resolution. Structure, 2012, 20, 957-966.	1.6	37
170	Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 861-870.	2.5	37
171	Model morphing and sequence assignment after molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2244-2250.	2.5	37
172	Conformationâ€dependent backbone geometry restraints set a new standard for protein crystallographic refinement. FEBS Journal, 2014, 281, 4061-4071.	2.2	36
173	Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS). ACS Chemical Biology, 2014, 9, 1470-1479.	1.6	36
174	Crystal Structures of an NAD Kinase from Archaeoglobus fulgidus in Complex with ATP, NAD, or NADP. Journal of Molecular Biology, 2005, 354, 289-303.	2.0	35
175	Protein structures by spallation neutron crystallography. Journal of Synchrotron Radiation, 2008, 15, 215-218.	1.0	35
176	Automatic Solution of Heavy-Atom Substructures. Methods in Enzymology, 2003, 374, 37-83.	0.4	34
177	Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. Lab on A Chip, 2014, 14, 4533-4539.	3.1	34
178	Engineering Saccharomyces cerevisiae for isoprenol production. Metabolic Engineering, 2021, 64, 154-166.	3.6	34
179	Crystal Structure of a PhoU Protein Homologue. Journal of Biological Chemistry, 2005, 280, 15960-15966.	1.6	33
180	Acoustic deposition with NIMS as a high-throughput enzyme activity assay. Analytical and Bioanalytical Chemistry, 2012, 403, 707-711.	1.9	33

#	Article	IF	CITATIONS
181	Jungle Express is a versatile repressor system for tight transcriptional control. Nature Communications, 2018, 9, 3617.	5.8	33
182	Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metabolic Engineering, 2021, 64, 41-51.	3.6	33
183	Evidence of Functional Protein Dynamics from X-Ray Crystallographic Ensembles. PLoS Computational Biology, 2010, 6, e1000911.	1.5	32
184	Mechanism of nucleotide sensing in group II chaperonins. EMBO Journal, 2012, 31, 731-740.	3.5	32
185	Automated "Cells-To-Peptides―Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes. Journal of Proteome Research, 2019, 18, 3752-3761.	1.8	32
186	Development of a Native Escherichia coli Induction System for Ionic Liquid Tolerance. PLoS ONE, 2014, 9, e101115.	1.1	31
187	Macromolecular X-ray structure determination using weak, single-wavelength anomalous data. Nature Methods, 2015, 12, 127-130.	9.0	31
188	Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Acta Crystallographica Section D: Structural Biology, 2016, 72, 346-358.	1.1	31
189	Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy. Scientific Reports, 2017, 7, 3673.	1.6	31
190	Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 181-190.	2.5	30
191	Cryo_fit: Democratization of flexible fitting for cryo-EM. Journal of Structural Biology, 2019, 208, 1-6.	1.3	30
192	Structural Genomics of Minimal Organisms and Protein Fold Space. Journal of Structural and Functional Genomics, 2005, 6, 63-70.	1.2	29
193	Crystal Structure of the "PhoU-Like―Phosphate Uptake Regulator from Aquifex aeolicus. Journal of Bacteriology, 2005, 187, 4238-4244.	1.0	29
194	Structure of endoglucanase Cel9A from the thermoacidophilic <i>Alicyclobacillus acidocaldarius</i> . Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 744-750.	2.5	29
195	Colloid-based multiplexed screening for plant biomass-degrading glycoside hydrolase activities in microbial communities. Energy and Environmental Science, 2011, 4, 2884.	15.6	29
196	Metrics for comparison of crystallographic maps. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2593-2606.	2.5	29
197	Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallographica Section D: Structural Biology, 2016, 72, 359-374.	1.1	29
198	Methyl ketone production by <i>Pseudomonas putida</i> is enhanced by plantâ€derived amino acids. Biotechnology and Bioengineering, 2019, 116, 1909-1922.	1.7	29

#	Article	IF	CITATIONS
199	Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for improved structure and ligand quality. Structure, 2021, 29, 913-921.e4.	1.6	29
200	Improved ligand geometries in crystallographic refinement using <i>AFITT</i> in <i>PHENIX</i> . Acta Crystallographica Section D: Structural Biology, 2016, 72, 1062-1072.	1.1	29
201	Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into <i>Phenix</i> . Acta Crystallographica Section D: Structural Biology, 2020, 76, 51-62.	1.1	29
202	Constructing Tailored Isoprenoid Products by Structure-Guided Modification of Geranylgeranyl Reductase. Structure, 2014, 22, 1028-1036.	1.6	28
203	Density modification of cryo-EM maps. Acta Crystallographica Section D: Structural Biology, 2020, 76, 912-925.	1.1	28
204	Supplementation of Intracellular XylR Leads to Coutilization of Hemicellulose Sugars. Applied and Environmental Microbiology, 2012, 78, 2221-2229.	1.4	27
205	Cryoâ€EM map interpretation and protein modelâ€building using iterative map segmentation. Protein Science, 2020, 29, 87-99.	3.1	27
206	An editor for the generation and customization of geometry restraints. Acta Crystallographica Section D: Structural Biology, 2017, 73, 123-130.	1.1	27
207	Blind image analysis for the compositional and structural characterization of plant cell walls. Analytica Chimica Acta, 2011, 702, 172-177.	2.6	26
208	High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration. Bioresource Technology, 2011, 102, 1329-1337.	4.8	26
209	Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from <i>Crystallography 2012 68 391-403</i>	2.5	26
210	Structure of the Transmembrane Cysteine Residues in Phospholamban. Journal of Membrane Biology, 1997, 155, 199-206.	1.0	25
211	Annealing in crystallography: a powerful optimization tool. Progress in Biophysics and Molecular Biology, 1999, 72, 135-155.	1.4	25
212	Algorithms for deriving crystallographic space-group information. II. Treatment of special positions. Acta Crystallographica Section A: Foundations and Advances, 2002, 58, 60-65.	0.3	24
213	Crystal Structure of a Heat-inducible Transcriptional Repressor HrcA from Thermotoga maritima: Structural Insight into DNA Binding and Dimerization. Journal of Molecular Biology, 2005, 350, 987-996.	2.0	24
214	A rapid and inexpensive labeling method for microarray gene expression analysis. BMC Biotechnology, 2009, 9, 97.	1.7	24
215	Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3205-E3214.	3.3	24
216	<i>DiSCaMB</i> : a software library for aspherical atom model X-ray scattering factor calculations with CPUs and GPUs. Journal of Applied Crystallography, 2018, 51, 193-199.	1.9	24

#	Article	IF	CITATIONS
217	Recent developments in phasing and structure refinement for macromolecular crystallography. Current Opinion in Structural Biology, 2009, 19, 566-572.	2.6	23
218	A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection. Integrative Biology (United Kingdom), 2016, 8, 542-545.	0.6	23
219	Response of <i>Pseudomonas putida</i> to Complex, Aromaticâ€Rich Fractions from Biomass. ChemSusChem, 2020, 13, 4455-4467.	3.6	23
220	Raman-spectroscopy-based noninvasive microanalysis of native lignin structure. Analytical and Bioanalytical Chemistry, 2012, 402, 983-987.	1.9	22
221	Iron―and aluminiumâ€induced depletion of molybdenum in acidic environments impedes the nitrogen cycle. Environmental Microbiology, 2019, 21, 152-163.	1.8	22
222	Application of targeted proteomics to metabolically engineered <i><scp>E</scp>scherichia coli</i> . Proteomics, 2012, 12, 1289-1299.	1.3	21
223	<i>In Vitro</i> Analysis of Carboxyacyl Substrate Tolerance in the Loading and First Extension Modules of Borrelidin Polyketide Synthase. Biochemistry, 2014, 53, 5975-5977.	1.2	21
224	Nonâ€invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnology and Bioengineering, 2016, 113, 82-90.	1.7	21
225	Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes. PLoS ONE, 2017, 12, e0177591.	1.1	21
226	Improved statistics for determining the Patterson symmetry from unmerged diffraction intensities. Journal of Applied Crystallography, 2006, 39, 158-168.	1.9	20
227	Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. Journal of Structural and Functional Genomics, 2006, 6, 269-279.	1.2	20
228	Encoding substrates with mass tags to resolve stereospecific reactions using Nimzyme. Rapid Communications in Mass Spectrometry, 2012, 26, 611-615.	0.7	20
229	The Protein Structure Initiative Structural Biology Knowledgebase Technology Portal: a structural biology web resource. Journal of Structural and Functional Genomics, 2012, 13, 57-62.	1.2	20
230	Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass. PLoS ONE, 2013, 8, e79725.	1.1	20
231	Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues. ChemMedChem, 2014, 9, 2286-2293.	1.6	20
232	Cellulosic Biomass Pretreatment and Sugar Yields as a Function of Biomass Particle Size. PLoS ONE, 2014, 9, e100836.	1.1	19
233	Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1346-1356.	2.5	19
234	On the use of logarithmic scales for analysis of diffraction data. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1283-1291.	2.5	18

#	Article	IF	CITATIONS
235	Crystal structure of the transcriptional activator HlyU from <i>Vibrio vulnificus</i> CMCP6. FEBS Letters, 2010, 584, 1097-1102.	1.3	18
236	Improved Crystallographic Structures Using Extensive Combinatorial Refinement. Structure, 2013, 21, 1923-1930.	1.6	18
237	Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 357-366.	2.5	18
238	Molecular simulations provide new insights into the role of the accessory immunoglobulinâ€like domain of Cel9A. FEBS Letters, 2010, 584, 3431-3435.	1.3	17
239	Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. MBio, 2016, 7, .	1.8	17
240	A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS ONE, 2019, 14, e0211582.	1.1	17
241	Recent developments in software for the automation of crystallographic macromolecular structure determination. Current Opinion in Structural Biology, 2000, 10, 564-568.	2.6	16
242	Structure of the OsSERK2 leucine-rich repeat extracellular domain. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3080-3086.	2.5	16
243	Iron–sulfur clusters have no right angles. Acta Crystallographica Section D: Structural Biology, 2019, 75, 16-20.	1.1	16
244	Automatic Fortran to C++ conversion with FABLE. Source Code for Biology and Medicine, 2012, 7, 5.	1.7	15
245	Evaluation of models determined by neutron diffraction and proposed improvements to their validation and deposition. Acta Crystallographica Section D: Structural Biology, 2018, 74, 800-813.	1.1	15
246	Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion. Analytical Chemistry, 2010, 82, 9513-9520.	3.2	14
247	Application of targeted proteomics and biological parts assembly in E. coli to optimize the biosynthesis of an anti-malarial drug precursor, amorpha-4,11-diene. Chemical Engineering Science, 2013, 103, 21-28.	1.9	14
248	Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1657-1667.	2.5	14
249	Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS. Frontiers in Bioengineering and Biotechnology, 2015, 3, 153.	2.0	14
250	Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Biotechnology for Biofuels, 2018, 11, 266.	6.2	14
251	<i>CERES</i> : a cryo-EM re-refinement system for continuous improvement of deposited models. Acta Crystallographica Section D: Structural Biology, 2021, 77, 48-61.	1.1	14
252	From deep TLS validation to ensembles of atomic models built from elemental motions. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1668-1683.	2.5	14

#	Article	IF	CITATIONS
253	Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1354-1363.	2.5	13
254	Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103, 68-73.	1.9	13
255	Programming new geometry restraints: parallelity of atomic groups. Journal of Applied Crystallography, 2015, 48, 1130-1141.	1.9	13
256	Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PLoS ONE, 2017, 12, e0189604.	1.1	13
257	Interactive comparison and remediation of collections of macromolecular structures. Protein Science, 2018, 27, 182-194.	3.1	13
258	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	1.5	12
259	Structure of rodent urinary proteins. Biochemical Society Transactions, 1990, 18, 936-937.	1.6	11
260	Patterson correlation methods: a review of molecular replacement withCNS. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1390-1396.	2.5	11
261	Exact direct-space asymmetric units for the 230 crystallographic space groups. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, 269-275.	0.3	11
262	High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production. Frontiers in Microbiology, 2013, 4, 365.	1.5	11
263	Golgi Enrichment and Proteomic Analysis of Developing Pinus radiata Xylem by Free-Flow Electrophoresis. PLoS ONE, 2013, 8, e84669.	1.1	11
264	Evaluation system and web infrastructure for the second cryo-EM model challenge. Journal of Structural Biology, 2018, 204, 96-108.	1.3	11
265	Characterization of a Metal-Resistant Bacillus Strain With a High Molybdate Affinity ModA From Contaminated Sediments at the Oak Ridge Reservation. Frontiers in Microbiology, 2020, 11, 587127.	1.5	11
266	An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nature Communications, 2020, 11, 2931.	5.8	11
267	Ligand placement based on prior structures: the guided ligand-replacement method. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 134-143.	2.5	11
268	Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. Journal of Applied Crystallography, 2017, 50, 1352-1358.	1.9	11
269	Structure of a NAD kinase fromThermotoga maritimaat 2.3â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 640-646	0.7	10
270	A Microscale Platform for Integrated Cell-Free Expression and Activity Screening of Cellulases. Journal of Proteome Research, 2010, 9, 5677-5683.	1.8	10

#	Article	IF	CITATIONS
271	Understanding the Role of Histidine in the GHSxG Acyltransferase Active Site Motif: Evidence for Histidine Stabilization of the Malonyl-Enzyme Intermediate. PLoS ONE, 2014, 9, e109421.	1.1	10
272	Structure and Function of BorB, the Type II Thioesterase from the Borrelidin Biosynthetic Gene Cluster. Biochemistry, 2020, 59, 1630-1639.	1.2	10
273	Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biotechnology for Biofuels, 2021, 14, 108.	6.2	10
274	Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct? a. Annals of the New York Academy of Sciences, 1998, 853, 178-185.	1.8	9
275	Structure of FabH and factors affecting the distribution of branched fatty acids in <i>Micrococcus luteus</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1320-1328.	2.5	9
276	Structural Mechanism of Regioselectivity in an Unusual Bacterial Acyl-CoA Dehydrogenase. Journal of the American Chemical Society, 2020, 142, 835-846.	6.6	9
277	Protein identification from electron cryomicroscopy maps by automated model building and side-chain matching. Acta Crystallographica Section D: Structural Biology, 2021, 77, 457-462.	1.1	9
278	On symmetries of substructures. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1974-1977.	2.5	8
279	Implementation of the riding hydrogen model in CCTBX to support the next generation of X-ray and neutron joint refinement in Phenix. Methods in Enzymology, 2020, 634, 177-199.	0.4	8
280	Structure of O67745_AQUAE, a hypothetical protein fromAquifex aeolicus. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 369-374.	0.7	7
281	From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation. Acta Crystallographica Section D: Structural Biology, 2018, 74, 621-631.	1.1	7
282	Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1225-1235.	1.4	7
283	A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities. Scientific Reports, 2021, 11, 11803.	1.6	7
284	Reply to Wang et al.: Clear evidence of binding of Ox to the oxygen-evolving complex of photosystem II is best observed in the omit map. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2102342118.	3.3	7
285	Arginine off-kilter: guanidinium is not as planar as restraints denote. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1159-1166.	1.1	7
286	Integration of software tools for integrative modeling of biomolecular systems. Journal of Structural Biology, 2022, 214, 107841.	1.3	7
287	A Synthetic Gene Library Yields a Previously Unknown Glycoside Phosphorylase That Degrades and Assembles Poly-β-1,3-ClcNAc, Completing the Suite of β-Linked GlcNAc Polysaccharides. ACS Central Science, 2022, 8, 430-440.	5.3	7
288	Hitherto Unrecognized Fluorescence Properties of Coniferyl Alcohol. Molecules, 2010, 15, 1645-1667.	1.7	6

#	Article	IF	CITATIONS
289	Mechanical Stress Analysis as a Method to Understand the Impact of Genetically Engineered Rice and Arabidopsis Plants. Industrial Biotechnology, 2012, 8, 238-244.	0.5	6
290	Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Frontiers in Bioengineering and Biotechnology, 2015, 3, 165.	2.0	6
291	Map segmentation, automated model-building and their application to the Cryo-EM Model Challenge. Journal of Structural Biology, 2018, 204, 338-343.	1.3	6
292	Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. , 1996, 26, 257.		6
293	Opportunities and challenges with the growth of neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1121-1123.	2.5	5
294	A universal flow cytometry assay for screening carbohydrate-active enzymes using glycan microspheres. Chemical Communications, 2013, 49, 5441.	2.2	5
295	Distribution of evaluation scores for the models submitted to the second cryo-EM model challenge. Data in Brief, 2018, 20, 1629-1638.	0.5	5
296	Automated flow-based/digital microfluidic platform integrated with onsite electroporation process for multiplex genetic engineering applications. , 2018, , .		5
297	Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products. Molecules, 2009, 14, 4758-4778.	1.7	4
298	Using support vector machines to improve elemental ion identification in macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1147-1158.	2.5	4
299	Reply to Kiser: Dioxygen binding in NOV1 crystal structures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6029-E6030.	3.3	4
300	A robust bulk solvent correction and anisotropic scaling procedure in the CCTBX. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c160-c160.	0.3	4
301	FINDMOL: automated identification of macromolecules in electron-density maps. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1514-1520.	2.5	3
302	1.7 Refinement of X-ray Crystal Structures. , 2012, , 105-115.		3
303	Structural Genomics of Minimal Organisms: Pipeline and Results. Methods in Molecular Biology, 2008, 426, 475-496.	0.4	3
304	Macromolecular crystallographic estructure refinement. Arbor, 2015, 191, a219.	0.1	3
305	Modular automated bottom-up proteomic sample preparation for high-throughput applications. PLoS ONE, 2022, 17, e0264467.	1.1	3
306	Technical Report: Recent Major Improvements to the ALS Sector 5 Macromolecular Crystallography Beamlines. Synchrotron Radiation News, 2007, 20, 23-30.	0.2	2

#	Article	IF	CITATIONS
307	The development of an automated data analysis system for high-pressure powder diffraction data collected using an area detector. High Pressure Research, 2008, 28, 293-298.	0.4	2
308	Mechanism of nucleotide sensing in group II chaperonins. EMBO Journal, 2012, 31, 3949-3950.	3.5	2
309	CRYO-EM Atomic Model of Brome Mosaic Virus Derived from Direct Electron Detection Images and a Real-Space Model Optimization Protocol. Biophysical Journal, 2014, 106, 600a.	0.2	2
310	The Berkeley Center for Structural Biology at the Advanced Light Source. Synchrotron Radiation News, 2015, 28, 22-27.	0.2	2
311	New Applications of Simulated Annealing in Crystallographic Refinement. , 1998, , 143-157.		2
312	Improved chemistry restraints for crystallographic refinement by integrating Amber molecular mechanics in Phenix. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a145-a145.	0.0	2
313	Automated structure determination with PHENIX. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s85-s85.	0.3	2
314	X-ray diffraction analysis and <i>in vitro</i> characterization of the UAM2 protein from <i>Oryza sativa</i> . Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 241-245.	0.4	1
315	Engineering glycoside hydrolase stability by the introduction of zinc binding. Acta Crystallographica Section D: Structural Biology, 2018, 74, 702-710.	1.1	1
316	Molecular replacement and model-building using distant homology models as templates. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s17-s18.	0.3	1
317	Torsion Angle Refinement and Dynamics as a Tool to Aid Crystallographic Structure Determination. , 2009, , .		1
318	Macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C22-C23.	0.3	1
319	POLYGONand other tools: model validation at a glance. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s311-s312.	0.3	1
320	Ensemble refinement of protein crystal structures in <i>PHENIX</i> . Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C133-C134.	0.3	1
321	Computational Aspects of High-Throughput Crystallographic Macromolecular Structure Determination. Methods of Biochemical Analysis, 2005, 44, 75-87.	0.2	Ο
322	Corrigendum to "Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A―[FEBS Lett. 584 (2010) 3432-3436]. FEBS Letters, 2010, 584, 3672-3672.	1.3	0
323	The PSI SGKB Technology Portal - An Online Database of Structural Genomics Technologies. Biophysical Journal, 2010, 98, 250a.	0.2	0
324	How to use the PSI Structural Genomics Knowledgebase to Enable Research. Biophysical Journal, 2010, 98, 250a.	0.2	0

#	Article	IF	CITATIONS
325	Photon Science at the ALS for Sustainable Energy. Synchrotron Radiation News, 2010, 23, 8-15.	0.2	Ο
326	The Structural Biology Knowledgebase - search Online for Protein Sequences, Structures, Functions, Methods and More. Biophysical Journal, 2011, 100, 319a.	0.2	0
327	Combining Crystallographic and Structure-Modeling Approaches in Macromolecular Crystallography. Biophysical Journal, 2014, 106, 34a.	0.2	Ο
328	Diffuse X-Ray Scattering for Ensemble Modeling of Crystalline Proteins. Biophysical Journal, 2014, 106, 384a.	0.2	0
329	Self-assembled gold nanoparticle film for nanostructure-initiator mass spectrometry with passive on-line salt fractionation. , 2017, , .		Ο
330	Parallel microarraying of microfluidic droplets for high-throughput integration with matrix-assisted laser desorption ionization mass spectrometry. , 2017, , .		0
331	Polder maps: improving OMIT maps for ligand building and validation. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C48-C48.	0.0	Ο
332	Draft Genome Sequence of <i>Bacillus</i> sp. Strain EB106-08-02-XG196, Isolated from High-Nitrate-Contaminated Sediment. Microbiology Resource Announcements, 2020, 9, .	0.3	0
333	What are the current limits on determination of protonation state using neutron macromolecular crystallography?. Methods in Enzymology, 2020, 634, 225-255.	0.4	Ο
334	Hybrid programming in crystallography: Phenix.refine and Phenix.hyss. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c81-c82.	0.3	0
335	mmCIF and modern macromolecular structure determination software: status and perspectives. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c127-c127.	0.3	Ο
336	Phenix refine developments. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s80-s80.	0.3	0
337	Cctbx architecture and algorithms. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C44-C45.	0.3	0
338	The PSI structural genomics knowledgebase. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C364-C364.	0.3	0
339	The Structural Biology Knowledgebase – structures, functions, methods and more. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C555-C555.	0.3	0
340	Graphical tools for structure determination and refinement inPHENIX. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C161-C162.	0.3	0
341	A trigonometric minimum model for refinement. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C597-C597.	0.3	0
342	New bulk-solvent model improves model-to-data fit and facilitates map interpretation. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s22-s22.	0.0	0

#	Article	IF	CITATIONS
343	Phasing strategies II – molecular replacement. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a391-a391.	0.0	0
344	Model-building using cryo-EM and crystallographic maps. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1327-C1327.	0.0	0
345	Video tutorials for the <i>Phenix</i> software suite. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1134-C1134.	0.0	0
346	Polder maps: improving OMIT maps for ligand building and validation. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a308-a308.	0.0	0
347	The collaborative crystallography program at the Advanced Light Source. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a431-a431.	0.0	Ο
348	High-throughput protein–ligand complex structure solution with Phenix. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a445-a445.	0.0	0
349	Updated validation and deposition tools in the <i>Phenix</i> GUI. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a339-a339.	0.0	0
350	Developing a shared computing and networking infrastructure for the ALS-ENABLE structural biology program at the Advanced Light Source. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a248-a248.	0.0	0
351	Efficient real-space refinement for cryo-EM and crystallography. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e86-e86.	0.0	0