Christian Hasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2075639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical and experimental study on knocking combustion in turbocharged direct-injection engines for a wide range of operating conditions. International Journal of Engine Research, 2023, 24, 652-671.	1.4	2
2	Numerical investigation and assessment of flamelet-based models for the prediction of pulverized solid fuel homogeneous ignition and combustion. Combustion and Flame, 2022, 235, 111693.	2.8	11
3	Numerical and experimental investigations of the early injection process of Spray G in a constant volume chamber and an optically accessible DISI engine. International Journal of Engine Research, 2022, 23, 2073-2093.	1.4	4
4	Detailed assessment of the thermochemistry in a side-wall quenching burner by simultaneous quantitative measurement of CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si7.svg"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , CO and temperature using laser diagnostics. Combustion and Flame, 2022, 235, 111707.	2.8	14
5	Flame structure analysis and composition space modeling of thermodiffusively unstable premixed hydrogen flames — Part II: Elevated pressure. Combustion and Flame, 2022, 238, 111808.	2.8	8
6	Flame structure analysis and composition space modeling of thermodiffusively unstable premixed hydrogen flames — Part I: Atmospheric pressure. Combustion and Flame, 2022, 238, 111815.	2.8	10
7	Soot Prediction in a Model Aero-Engine Combustor using a Quadrature-based Method of Moments. , 2022, , .		0
8	Turbulent flame-wall interaction of premixed flames using Quadrature-based Moment Methods (QbMM) and tabulated chemistry: An a priori analysis. International Journal of Heat and Fluid Flow, 2022, 93, 108913.	1.1	5
9	Characterization of flow field and combustion dynamics in a novel pressurized side-wall quenching burner using high-speed PIV/OH-PLIF measurements. International Journal of Heat and Fluid Flow, 2022, 94, 108921.	1.1	10
10	Ignition under strained conditions: Unsteady flamelet progress variable modeling for diesel engine conditions in the transient counterflow configuration. Combustion and Flame, 2022, 240, 111841.	2.8	7
11	The role of hydrogen for future internal combustion engines. International Journal of Engine Research, 2022, 23, 529-540.	1.4	95
12	Two-Phase Flow Simulations of Liquid/Gas Transport in Radial Centrifugal Pumps With Special Emphasis on the Transition From Bubbles to Adherent Gas Accumulations. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .	0.8	7
13	Flamelet LES of swirl-stabilized oxy-fuel flames using directly coupled multi-step solid fuel kinetics. Combustion and Flame, 2022, 241, 112062.	2.8	6
14	Evaluation of the unsteady flamelet progress variable approach in Large Eddy Simulations of the ECN Spray A. , 2022, 77, 5.		3
15	Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures. Combustion and Flame, 2022, 243, 112125.	2.8	10
16	Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants. Renewable and Sustainable Energy Reviews, 2022, 165, 112579.	8.2	45
17	Effect of oxymethylene ether-2-3-4 (OME2-4) on soot particle formation and chemical features. Fuel, 2022, 324, 124617.	3.4	10
18	Soot particle size distribution reconstruction in a turbulent sooting flame with the split-based extended quadrature method of moments. Physics of Fluids, 2022, 34, .	1.6	11

#	Article	IF	CITATIONS
19	A Gauss/anti-Gauss quadrature method of moments applied to population balance equations with turbulence-induced nonlinear phase-space diffusion. Journal of Computational Physics, 2022, 466, 111363.	1.9	3
20	Experimental and numerical study on the effect of oxymethylene ether-3 (OME3) on soot particle formation. Fuel, 2021, 286, 119353.	3.4	34
21	Ignition Under Strained Conditions: A Comparison Between Instationary Counterflow and Non-premixed Flamelet Solutions. Flow, Turbulence and Combustion, 2021, 106, 1277-1293.	1.4	2
22	Strain Rate Effects on Head-on Quenching of Laminar Premixed Methane-air flames. Flow, Turbulence and Combustion, 2021, 106, 631-647.	1.4	11
23	Premixed flames for arbitrary combinations of strain and curvature. Proceedings of the Combustion Institute, 2021, 38, 2031-2039.	2.4	12
24	Thermal and chemical effects of differential diffusion in turbulent non-premixed H2 flames. Proceedings of the Combustion Institute, 2021, 38, 2627-2634.	2.4	17
25	Numerical investigation of pulverized coal particle group combustion using tabulated chemistry. Proceedings of the Combustion Institute, 2021, 38, 4033-4041.	2.4	13
26	Catalytic influence of mineral compounds on the reactivity of cellulose-derived char in O2-, CO2-, and H2O-containing atmospheres. Fuel, 2021, 287, 119584.	3.4	7
27	Numerical investigation of swirl-stabilized pulverized coal flames in air and oxy-fuel atmospheres by means of large eddy simulation coupled with tabulated chemistry. Fuel, 2021, 287, 119429.	3.4	12
28	Calibration and validation of a comprehensive kinetic model of coal conversion in inert, air and oxy-fuel conditions using data from multiple test rigs. Fuel, 2021, 290, 119682.	3.4	7
29	Effects of air and oxy-fuel atmospheres on flamelet modeling of pollutant formation in laminar counterflow solid fuel flames. Fuel, 2021, 285, 119079.	3.4	3
30	Investigation of the ignition processes of a multi-injection flame in a Diesel engine environment using the flamelet model. Proceedings of the Combustion Institute, 2021, 38, 5605-5613.	2.4	6
31	Detailed analysis of early-stage NO formation in turbulent pulverized coal combustion with fuel-bound nitrogen. Proceedings of the Combustion Institute, 2021, 38, 4111-4119.	2.4	9
32	Large eddy simulation of Cambridge bluff-body coal (CCB2) flames with a flamelet progress variable model. Proceedings of the Combustion Institute, 2021, 38, 5347-5354.	2.4	2
33	Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry. Proceedings of the Combustion Institute, 2021, 38, 2551-2558.	2.4	21
34	Evaluation of Quadrature-based Moment Methods in turbulent premixed combustion. Proceedings of the Combustion Institute, 2021, 38, 2877-2884.	2.4	5
35	Flame structure analysis of turbulent premixed/stratified flames with H2 addition considering differential diffusion and stretch effects. Proceedings of the Combustion Institute, 2021, 38, 2993-3001.	2.4	13
36	A Wall-Adapted Anisotropic Heat Flux Model for Large Eddy Simulations of Complex Turbulent Thermal Flows. Flow, Turbulence and Combustion, 2021, 106, 733-752.	1.4	3

#	Article	IF	CITATIONS
37	Numerical Study of Quenching Distances for Side-Wall Quenching Using Detailed Diffusion and Chemistry. Flow, Turbulence and Combustion, 2021, 106, 649-679.	1.4	38
38	A phenomenological modelling framework for particle emission simulation in a direct-injection gasoline engine. International Journal of Engine Research, 2021, 22, 1166-1179.	1.4	9
39	Characterization of multi-regime reaction zones in a piloted inhomogeneous jet flame with local extinction. Proceedings of the Combustion Institute, 2021, 38, 2571-2579.	2.4	5
40	Flamelet LES of a swirl-stabilized multi-stream pulverized coal burner in air and oxy-fuel atmospheres with pollutant formation. Proceedings of the Combustion Institute, 2021, 38, 4141-4149.	2.4	15
41	Numerical Analysis of a Turbulent Pulverized Coal Flame Using a Flamelet/Progress Variable Approach and Modeling Experimental Artifacts. Energy & Fuels, 2021, 35, 7133-7143.	2.5	10
42	Systematic evaluation and kinetic modeling of low heating rate sulfur release in various atmospheres. Fuel, 2021, 289, 119739.	3.4	4
43	Non-equilibrium wall functions for large Eddy simulations of complex turbulent flows and heat transfer. International Journal of Heat and Fluid Flow, 2021, 88, 108758.	1.1	10
44	Carrier-phase DNS of detailed NOx formation in early-stage pulverized coal combustion with fuel-bound nitrogen. Fuel, 2021, 291, 119998.	3.4	13
45	Simulation of side-wall quenching of laminar premixed flames with manifold-based reduced kinetic models implemented in generalised coordinates. Combustion Theory and Modelling, 2021, 25, 669-694.	1.0	4
46	Numerical Investigation on the Effect of the Oxymethylene Ether-3 (OME3) Blending Ratio in Premixed Sooting Ethylene Flames. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	5
47	Framelet LES of turbulent premixed/stratified frames with <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si10.svg"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H </mml:mi </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mmi:math 	2.8	13
48	addition. Combustion and Flame, 2021, 230, 111420. Advanced modeling approaches for CFD simulations of coal combustion and gasification. Progress in Energy and Combustion Science, 2021, 86, 100938.	15.8	45
49	A Predictive Physico-chemical Model of Biochar Oxidation. Energy & Fuels, 2021, 35, 14894-14912.	2.5	7
50	Effects of stretch-chemistry interaction on chemical pathways for strained and curved hydrogen/air premixed flames. Combustion and Flame, 2021, 232, 111532.	2.8	12
51	Chemistry effects in the wall quenching of laminar premixed DME flames. Combustion and Flame, 2021, 232, 111529.	2.8	8
52	Vapor pressures and latent heats of vaporization of Poly(oxymethylene) Dimethyl Ethers (OME3 and) Tj ETQq0 C	0 rgBT /C	verlock 10 Tf
	Euperimental and modeling accomment of outfur release from each under low and high besting rates		

53	Experimental and modeling assessment of sulfur release from coal under low and high heating rates. Proceedings of the Combustion Institute, 2021, 38, 4053-4061.	2.4	11
54	Investigation of Turbulent Pulverized Solid Fuel Combustion with Detailed Homogeneous and Heterogeneous Kinetics. Energy & Fuels, 2021, 35, 7077-7091.	2.5	5

#	Article	IF	CITATIONS
55	On Spray Modeling with Quadratureâ€Based Moment Methods. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000314.	0.2	Ο
56	Numerical Investigation of Local Heat-Release Rates and Thermo-Chemical States in Side-Wall Quenching of Laminar Methane and Dimethyl Ether Flames. Flow, Turbulence and Combustion, 2021, 106, 681-700.	1.4	18
57	Development and Application of an Efficient Chemical Reactor Network Model for Oxy-fuel Combustion. Energy & Fuels, 2021, 35, 7121-7132.	2.5	10
58	Large-eddy simulation of a multi-injection flame in a diesel engine environment using an unsteady flamelet/progress variable approach. Physics of Fluids, 2021, 33, .	1.6	6
59	A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer — Part I: A priori and budget analyses. Combustion and Flame, 2020, 216, 439-452.	2.8	16
60	IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 2020, 21, 3-10.	1.4	457
61	twoWayGPBEFoam: An open-source Eulerian QBMM solver for monokinetic bubbly flows. Computer Physics Communications, 2020, 250, 107036.	3.0	9
62	Effects of Soret diffusion on turbulent non-premixed H2 jet flames. Combustion and Flame, 2020, 213, 39-51.	2.8	10
63	Effect of Flame-Wall Interaction on Local Heat Release of Methane and DME Combustion in a Side-Wall Quenching Geometry. Flow, Turbulence and Combustion, 2020, 104, 1029-1046.	1.4	37
64	An experimental and numerical study on the combustion of lignites from different geographic origins. Fuel, 2020, 278, 118320.	3.4	7
65	Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. Journal of Physical Chemistry A, 2020, 124, 9626-9637.	1.1	8
66	Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates. Combustion and Flame, 2020, 218, 205-217.	2.8	7
67	Machine learning for predictive coal combustion CFD simulations—From detailed kinetics to HDMR Reduced-Order models. Fuel, 2020, 274, 117720.	3.4	15
68	Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements. Combustion and Flame, 2020, 219, 268-274.	2.8	26
69	Flamelet tabulation methods for SOx formation in pulverized solid fuel combustion. Combustion and Flame, 2020, 218, 150-167.	2.8	4
70	A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer—Part II: Strong heat losses and multi-mode combustion. Combustion and Flame, 2020, 216, 453-467.	2.8	11
71	Large Eddy Simulation of a laboratory-scale gas-assisted pulverized coal combustion chamber under oxy-fuel atmospheres using tabulated chemistry. Fuel, 2020, 272, 117683.	3.4	18
72	Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis. Biofuels and Biorefineries, 2020, , 31-76.	0.5	4

#	Article	IF	CITATIONS
73	Analysis of Gas-Assisted Pulverized Coal Combustion in Cambridge Coal Burner CCB1 Using FPV-LES. Energy & Fuels, 2020, 34, 7477-7489.	2.5	5
74	Experimental and numerical investigation of a stagnation pulverised coal flame. Proceedings of the Combustion Institute, 2019, 37, 2857-2866.	2.4	12
75	The role of tangential diffusion in evaluating the performance of flamelet models. Proceedings of the Combustion Institute, 2019, 37, 1767-1774.	2.4	14
76	Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. Proceedings of the Combustion Institute, 2019, 37, 2555-2563.	2.4	38
77	Assessing the relative importance of flame regimes in Raman/Rayleigh line measurements of turbulent lifted flames. Proceedings of the Combustion Institute, 2019, 37, 2297-2305.	2.4	19
78	Zero-flux approximations for multivariate quadrature-based moment methods. Journal of Computational Physics, 2019, 398, 108879.	1.9	2
79	Flamelet tabulation methods for solid fuel combustion with fuel-bound nitrogen. Combustion and Flame, 2019, 209, 155-166.	2.8	17
80	Multi-dimensional and transient effects on flamelet modeling for turbulent pulverized coal combustion. Fuel, 2019, 255, 115772.	3.4	6
81	Closure of the scalar dissipation rate in the spray flamelet equations through a transport equation for the gradient of the mixture fraction. Combustion and Flame, 2019, 208, 330-350.	2.8	7
82	Fully coupled control of a spark-ignited engine in driving cycle simulations. Automotive and Engine Technology, 2019, 4, 125-137.	0.7	2
83	Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows. AICHE Journal, 2019, 65, e16732.	1.8	12
84	A self-contained composition space solution method for strained and curved premixed flamelets. Combustion and Flame, 2019, 207, 342-355.	2.8	19
85	Assessing an experimental approach for chemical explosive mode and heat release rate using DNS data. Combustion and Flame, 2019, 209, 214-224.	2.8	11
86	Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics. Combustion and Flame, 2019, 210, 426-438.	2.8	43
87	An extended artificial thickening approach for strained premixed flames. Combustion and Flame, 2019, 206, 252-265.	2.8	10
88	Influence of flow topology and scalar structure on flame-tangential diffusion in turbulent non-premixed combustion. Combustion and Flame, 2019, 206, 21-36.	2.8	12
89	Numerical and experimental investigation of the laminar burning velocity of biofuels at atmospheric and high-pressure conditions. Fuel, 2019, 247, 250-256.	3.4	11
90	Detailed simulations for flamelet modelling of SO x formation from coal. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900367.	0.2	0

#	Article	IF	CITATIONS
91	A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proceedings of the Combustion Institute, 2019, 37, 1529-1536.	2.4	20
92	Evaluation of a flamelet/progress variable approach for pulverized coal combustion in a turbulent mixing layer. Proceedings of the Combustion Institute, 2019, 37, 2927-2934.	2.4	31
93	Scale-resolving Simulations for Combustion Process Development. MTZ Worldwide, 2019, 80, 62-67.	0.1	5
94	Flame Structure Analysis and Flamelet/Progress Variable Modelling of DME/Air Flames with Different Degrees of Premixing. Flow, Turbulence and Combustion, 2019, 102, 757-773.	1.4	1
95	Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics. Fuel, 2019, 240, 75-83.	3.4	40
96	A numerically robust method of moments with number density function reconstruction and its application to soot formation, growth and oxidation. Journal of Aerosol Science, 2019, 128, 34-49.	1.8	26
97	Wall heat fluxes and CO formation/oxidation during laminar and turbulent side-wall quenching of methane and DME flames. International Journal of Heat and Fluid Flow, 2018, 70, 181-192.	1.1	55
98	Large Eddy Simulation with tabulated chemistry of an experimental sidewall quenching burner. International Journal of Heat and Fluid Flow, 2018, 71, 95-110.	1.1	14
99	Detailed modeling of soot particle formation and comparison to optical diagnostics and size distribution measurements in premixed flames using a method of moments. Fuel, 2018, 222, 287-293.	3.4	22
100	A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations. International Journal of Engine Research, 2018, 19, 282-292.	1.4	33
101	A phenomenological mixture homogenization model for spark-ignition direct-injection engines. International Journal of Engine Research, 2018, 19, 168-178.	1.4	2
102	A physical-based approach for modeling cycle-to-cycle variations within a zero-dimensional/one-dimensional simulation environment. International Journal of Engine Research, 2018, 19, 55-66.	1.4	4
103	A Computationally Efficient Implementation of Tabulated Combustion Chemistry based on Polynomials and Automatic Source Code Generation. Flow, Turbulence and Combustion, 2018, 100, 119-146.	1.4	6
104	Regime identification from Raman/Rayleigh line measurements in partially premixed flames. Combustion and Flame, 2018, 189, 126-141.	2.8	41
105	A Large Eddy Simulation Study on the Effect of Devolatilization Modelling and Char Combustion Mode Modelling on the Structure of a Large-Scale, Biomass and Coal Co-Fired Flame. Journal of Combustion, 2018, 2018, 1-15.	0.5	10
106	Strategies to Define Surrogate Fuels for the Description of the Multicomponent Evaporation Behavior of Hydrocarbon Fuels. , 2018, , .		4
107	Investigation of the Turbulent Near Wall Flame Behavior for a Sidewall Quenching Burner by Means of a Large Eddy Simulation and Tabulated Chemistry. Fluids, 2018, 3, 65.	0.8	4
108	The impact of thermal diffusion on the structure of non-premixed flames. Combustion and Flame, 2018, 194, 352-362.	2.8	9

#	Article	IF	CITATIONS
109	Assessment of differential diffusion effects in flamelet modeling of oxy-fuel flames. Combustion and Flame, 2018, 197, 134-144.	2.8	23
110	A priori analysis of differential diffusion for model development for scale-resolving simulations. Physical Review Fluids, 2018, 3, .	1.0	5
111	Aufbau einer fahrzyklusfÄ ¤ igen Simulationsmethodik zur Modellierung der Partikelemissionen direkteinspritzender Ottomotoren. Proceedings, 2018, , 223-237.	0.2	0
112	Vergasung. , 2018, , 427-519.		0
113	Virtualisierung von Hochtemperaturprozessen. , 2018, , 579-606.		0
114	Nutzung der Ladungswechsel- und Motorprozesssimulation zur Gesamtsystembewertung von CO2- und Rohemissionen in Fahrzyklen. Proceedings, 2018, , 71-85.	0.2	0
115	Pyrolyse. , 2018, , 297-426.		0
116	Model-based virtual engine calibration with the help of phenomenological methods for spark-ignited engines. Applied Thermal Engineering, 2017, 121, 190-199.	3.0	20
117	Flame structure analysis and flamelet progress variable modelling of strained coal flames. Combustion Theory and Modelling, 2017, 21, 700-721.	1.0	45
118	Simulation of bubbly flows with special numerical treatments of the semi-conservative and fully conservative two-fluid model. Chemical Engineering Science, 2017, 174, 25-39.	1.9	33
119	Numerical study of natural gas reforming by non-catalytic partial oxidation based on the Virtuhcon Benchmark. Chemical Engineering Journal, 2017, 327, 307-319.	6.6	9
120	Dissipation element analysis of a turbulent non-premixed jet flame. Physics of Fluids, 2017, 29, 085103.	1.6	12
121	Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows. Computers and Fluids, 2017, 156, 66-80.	1.3	24
122	A Combined Numerical and Experimental Study of the 3D Tumble Structure and Piston Boundary Layer Development During the Intake Stroke of a Gasoline Engine. Flow, Turbulence and Combustion, 2017, 98, 579-600.	1.4	43
123	In-situ tracking of mixture fraction gradient trajectories and unsteady flamelet analysis in turbulent non-premixed combustion. Combustion and Flame, 2017, 175, 243-258.	2.8	21
124	Flamelet budget and regime analysis for non-premixed tubular flames. Proceedings of the Combustion Institute, 2017, 36, 1349-1356.	2.4	11
125	Detailed particle nucleation modeling in a sooting ethylene flame using a Conditional Quadrature Method of Moments (CQMOM). Proceedings of the Combustion Institute, 2017, 36, 771-779.	2.4	18
126	Comparative flame structure investigation of normal and inverse turbulent non-premixed oxy-fuel flames using experimentally recorded and numerically predicted Rayleigh and OH-PLIF signals. Proceedings of the Combustion Institute, 2017, 36, 1713-1720.	2.4	16

#	Article	IF	CITATIONS
127	A flamelet/progress variable approach for modeling coal particle ignition. Fuel, 2017, 201, 29-38.	3.4	32
128	Investigation of an IC Engine Intake Flow Based on Highly Resolved LES and PIV. Oil and Gas Science and Technology, 2017, 72, 15.	1.4	12
129	A Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry in Reactive Flow Simulations. Lecture Notes in Computer Science, 2017, , 82-95.	1.0	Ο
130	Identification of Large-Scale Structure Fluctuations in IC Engines using POD-Based Conditional Averaging. Oil and Gas Science and Technology, 2016, 71, 1.	1.4	55
131	Spatially Resolved Experimental and Numerical Investigation of the Flow through the Intake Port of an Internal Combustion Engine. Oil and Gas Science and Technology, 2016, 71, 2.	1.4	30
132	Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach. International Journal of Chemical Kinetics, 2016, 48, 423-441.	1.0	77
133	On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow. Journal of Fluid Mechanics, 2016, 802, .	1.4	15
134	Resolved flow simulation of pulverized coal particle devolatilization and ignition in air- and O 2 /CO 2 -atmospheres. Fuel, 2016, 186, 285-292.	3.4	59
135	Detailed analysis of reacting particles in an entrained-flow gasifier. Fuel Processing Technology, 2016, 144, 95-108.	3.7	40
136	Bivariate extensions of the Extended Quadrature Method of Moments (EQMOM) to describe coupled droplet evaporation and heat-up. Journal of Aerosol Science, 2016, 92, 53-69.	1.8	12
137	Application of a Phenomenological Model for the Engine-Out Emissions of Unburned Hydrocarbons in Driving Cycles. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	1.4	13
138	A systematic study on the applicability and limits of detailed chemistry based NO x models for simulations of the entire engine operating map of spark-ignition engines. Applied Thermal Engineering, 2016, 98, 910-923.	3.0	17
139	A Combined Experimental and Numerical Study of Laminar and Turbulent Non-piloted Oxy-fuel Jet Flames Using a Direct Comparison of the Rayleigh Signal. Flow, Turbulence and Combustion, 2016, 97, 231-262.	1.4	8
140	Speciation data for fuel-rich methane oxy-combustion and reforming under prototypical partial oxidation conditions. Chemical Engineering Science, 2016, 139, 249-260.	1.9	26
141	Scale-resolving simulations in engine combustion process design based on a systematic approach for model development. International Journal of Engine Research, 2016, 17, 44-62.	1.4	46
142	Models for Coal Kinetics. , 2015, , .		3
143	Line segments in homogeneous scalar turbulence. Physics of Fluids, 2015, 27, .	1.6	11
144	Analysis of Structure, Extinction and Broadening in Oxygen-Enhanced Non-Premixed Flames. Zeitschrift Fur Physikalische Chemie, 2015, 229, .	1.4	3

#	Article	IF	CITATIONS
145	A Quasi-dimensional Model of the Ignition Delay for Combustion Modeling in Spark-Ignition Engines. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	0.5	10
146	Large Eddy Simulation of coal combustion in a large-scale laboratory furnace. Proceedings of the Combustion Institute, 2015, 35, 3609-3617.	2.4	71
147	From laboratory-scale experiments to industrial-scale CFD simulations of entrained flow coal gasification. Fuel, 2015, 152, 58-73.	3.4	53
148	Experimental and numerical analysis of iso-octane/ethanol sprays under gasoline engine conditions. International Journal of Heat and Mass Transfer, 2015, 84, 497-510.	2.5	24
149	Modeling soot formation in premixed flames using an Extended Conditional Quadrature Method of Moments. Combustion and Flame, 2015, 162, 2529-2543.	2.8	62
150	LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combustion and Flame, 2015, 162, 3016-3029.	2.8	54
151	A multi-scale asymptotic scaling and regime analysis of flamelet equations including tangential diffusion effects for laminar and turbulent flames. Combustion and Flame, 2015, 162, 1507-1529.	2.8	36
152	A Constrained Control Approach for the Automated Choice of an Optimal Progress Variable for Chemistry Tabulation. Flow, Turbulence and Combustion, 2015, 94, 593-617.	1.4	31
153	Flamelet/progress variable modeling of partial oxidation systems: From laboratory flames to pilot-scale reactors. Chemical Engineering Science, 2015, 134, 694-707.	1.9	18
154	The influence of differential evaporation on the structure of a three-component biofuel spray. International Journal of Engine Research, 2015, 16, 610-626.	1.4	1
155	Reducing the memory footprint in Large Eddy Simulations of reactive flows. Parallel Computing, 2015, 49, 50-65.	1.3	15
156	Laminar burning velocity measurements using the Heat Flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures. Fuel, 2015, 140, 10-16.	3.4	47
157	Detailed radiation modeling of a partial-oxidation flame. International Journal of Thermal Sciences, 2015, 87, 68-84.	2.6	31
158	The Influence of Differential Diffusion in Turbulent Oxygen Enhanced Methane Flames. ERCOFTAC Series, 2015, , 511-517.	0.1	0
159	A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains. International Journal of Engine Research, 2014, 15, 805-816.	1.4	30
160	Evaluation of scale resolving turbulence generation methods for Large Eddy Simulation of turbulent flows. Computers and Fluids, 2014, 93, 116-128.	1.3	19
161	Simulation of entrained flow gasification with advanced coal conversion submodels. Part 2: Char conversion. Fuel, 2014, 118, 369-384.	3.4	47
162	Determination of laminar burning velocities for lean low calorific H2/N2 and H2/CO/N2 gas mixtures. International Journal of Hydrogen Energy, 2014, 39, 19810-19817.	3.8	28

#	Article	IF	CITATIONS
163	Application of proper orthogonal decomposition methods in reactive pore diffusion simulations. Canadian Journal of Chemical Engineering, 2014, 92, 1552-1560.	0.9	1
164	Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection spark ignition engines. Combustion and Flame, 2014, 161, 997-1014.	2.8	52
165	The analysis of chemical time scales in a partial oxidation flame. Combustion and Flame, 2014, 161, 416-426.	2.8	19
166	Numerical Simulation of Pulverized Coal MILD Combustion Using a New Heterogeneous Combustion Submodel. Flow, Turbulence and Combustion, 2014, 92, 319-345.	1.4	37
167	Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel, 2013, 113, 654-669.	3.4	97
168	The influence of non-ideal vapor–liquid equilibrium on the evaporation of ethanol/iso-octane droplets. International Journal of Heat and Mass Transfer, 2013, 64, 547-558.	2.5	60
169	Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame. Combustion and Flame, 2013, 160, 251-264.	2.8	25
170	A consistent flamelet formulation for a reacting char particle considering curvature effects. Combustion and Flame, 2013, 160, 2540-2558.	2.8	28
171	The influence of intra-droplet heat and mass transfer limitations in evaporation of binary hydrocarbon mixtures. International Journal of Heat and Mass Transfer, 2013, 67, 1191-1207.	2.5	21
172	Flamelet modeling of coal particle ignition. Proceedings of the Combustion Institute, 2013, 34, 2445-2452.	2.4	85
173	An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions. Combustion Theory and Modelling, 2013, 17, 411-430.	1.0	19
174	Experimental and numerical study of rich inverse diffusion flame structure. Proceedings of the Combustion Institute, 2013, 34, 1045-1055.	2.4	37
175	Towards Comprehensive Coal Combustion Modelling for LES. Flow, Turbulence and Combustion, 2013, 90, 859-884.	1.4	117
176	Flamelet-Modeling of Inverse Rich Diffusion Flames. Flow, Turbulence and Combustion, 2013, 90, 833-857.	1.4	17
177	Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers. Fuel Processing Technology, 2013, 110, 33-45.	3.7	24
178	Steady Flamelet Progress-Variable (FPV) Modeling and Simulation of a High-Pressure Gasifier. Energy & & amp; Fuels, 2013, 27, 7772-7777.	2.5	12
179	Numerical study of the partial oxidation of a coal particle in steam and dry air atmospheres. IMA Journal of Applied Mathematics, 2012, 77, 32-46.	0.8	33
180	Numerical simulation of pulverized coal MILD combustion considering advanced heterogeneous combustion model. , 2012, , .		0

#	Article	IF	CITATIONS
181	Flamelet-Based Time-Scale Analysis of a High-Pressure Gasifier. Energy & amp; Fuels, 2011, 25, 3892-3899.	2.5	21
182	Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach. Computers and Fluids, 2010, 39, 25-48.	1.3	79
183	A Consistent Flamelet Model to Describe the Interaction of Combustion Chemistry and Mixing in the Controlled Auto Ignition Regime. , 2010, , .		2
184	Implementation and Validation of the G-equation Model Coupled with Flamelet Libraries for Simulating Premixed Combustion in I.C. Engines. SAE International Journal of Engines, 2009, 2, 674-690.	0.4	5
185	Hybrid URANS/LES Turbulence Simulation of Vortex Shedding Behind a Triangular Flameholder. Flow, Turbulence and Combustion, 2009, 83, 1-20.	1.4	25
186	An extended flamelet model for multiple injections in DI Diesel engines. Proceedings of the Combustion Institute, 2009, 32, 2775-2783.	2.4	72
187	Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup. International Journal of Heat and Fluid Flow, 2009, 30, 32-43.	1.1	47
188	An experimental and numerical investigation of turbulent flame propagation and flame structure in a turbo-charged direct injection gasoline engine. Combustion Theory and Modelling, 2009, 13, 167-188.	1.0	24
189	Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF). , 2008, , .		4
190	A two mixture fraction flamelet model applied to split injections in a DI Diesel engine. Proceedings of the Combustion Institute, 2005, 30, 2755-2762.	2.4	145
191	Numerical simulation and laser-based imaging of mixture formation, ignition, and soot formation in a diesel spray. Proceedings of the Combustion Institute, 2005, 30, 2029-2036.	2.4	19
192	Modelling of ignition mechanisms and pollutant formation in direct-injection diesel engines with multiple injections. International Journal of Engine Research, 2005, 6, 231-246.	1.4	35
193	Aggregate formation in sooting counterflow diffusion flames. Proceedings of the Combustion Institute, 2002, 29, 2383-2390.	2.4	7
194	Development of adaptive kinetics for application in combustion systems. Proceedings of the Combustion Institute, 2002, 29, 1403-1410.	2.4	42
195	Quenching of laminar iso-octane flames at cold walls. Combustion and Flame, 2000, 122, 117-129.	2.8	96
196	Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proceedings of the Combustion Institute, 2000, 28, 1161-1168.	2.4	111
197	Modeling DI-Diesel Combustion using the Eulerian Particle Flamelet Model (EPFM). , 2000, , .		20
198	Differences between Iso-Octane and Methane during Wall Quenching with Respect to HC Emissions. ,		4

2000, , .

#	Article	IF	CITATIONS
199	Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines. International Journal of Engine Research, 2000, 1, 249-267.	1.4	88
200	Modelling the Effect of Split Injections in Diesel Engines Using Representative Interactive Flamelets. , 0, , .		24
201	Modeling of HCCI Combustion Using Adaptive Chemical Kinetics. , 0, , .		13
202	Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion. , 0, , .		4
203	Applying an Extended Flamelet Model for a Multiple Injection Operating Strategy in a Common-Rail DI Diesel Engine. SAE International Journal of Engines, 0, 2, 727-741.	0.4	3
204	CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector. , 0, , .		2