
Carlo Ventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2075610/publications.pdf Version: 2024-02-01

CADIO VENTUDA

#	Article	IF	CITATIONS
1	Information Survey on the Use of Complementary and Alternative Medicine. Medicina (Lithuania), 2022, 58, 125.	2.0	2
2	Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. International Journal of Molecular Sciences, 2022, 23, 3157.	4.1	3
3	Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. International Journal of Molecular Sciences, 2022, 23, 3819.	4.1	6
4	Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells. Cells, 2022, 11, 1629.	4.1	9
5	Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte, 2022, 11, 356-365.	2.8	4
6	Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. European Journal of Cell Biology, 2022, 101, 151251.	3.6	5
7	Identifying a Role of Red and White Wine Extracts in Counteracting Skin Aging: Effects of Antioxidants on Fibroblast Behavior. Antioxidants, 2021, 10, 227.	5.1	4
8	Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells, 2021, 10, 1415.	4.1	7
9	Metformin and Vitamin D Modulate Inflammation and Autophagy during Adipose-Derived Stem Cell Differentiation. International Journal of Molecular Sciences, 2021, 22, 6686.	4.1	11
10	Adipose-Derived Stem Cell Features and MCF-7. Cells, 2021, 10, 1754.	4.1	2
11	Special Issue of International Journal of Molecular Sciences "Opioid Receptors and Endorphinergic Systems 2.0â€: International Journal of Molecular Sciences, 2021, 22, 8365.	4.1	0
12	Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World Journal of Stem Cells, 2021, 13, 1382-1393.	2.8	2
13	Protective effects of exosomes derived from lyophilized porcine liver against acetaminophen damage on HepG2 cells. BMC Complementary Medicine and Therapies, 2021, 21, 299.	2.7	1
14	Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells International, 2020, 2020, 1-28.	2.5	10
15	Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells, 2020, 9, 2530.	4.1	10
16	Tuning Adipogenic Differentiation in ADSCs by Metformin and Vitamin D: Involvement of miRNAs. International Journal of Molecular Sciences, 2020, 21, 6181.	4.1	11
17	Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes, 2020, 11, 909.	2.4	24
18	Behavioral Changes in Stem-Cell Potency by HepG2-Exhausted Medium. Cells, 2020, 9, 1890.	4.1	7

#	Article	IF	CITATIONS
19	Fibroblast Proliferation and Migration in Wound Healing by Phytochemicals: Evidence for a Novel Synergic Outcome. International Journal of Medical Sciences, 2020, 17, 1030-1042.	2.5	94
20	Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology, 2020, 9, 57.	2.8	11
21	Direct-to-Consumer Nutrigenetics Testing: An Overview. Nutrients, 2020, 12, 566.	4.1	27
22	Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu. Cell Transplantation, 2020, 29, 096368972091617.	2.5	15
23	Extracts from Myrtle Liqueur Processing Waste Modulate Stem Cells Pluripotency under Stressing Conditions. BioMed Research International, 2019, 2019, 1-12.	1.9	16
24	Epigenetics, Stem Cells, and Autophagy: Exploring a Path Involving miRNA. International Journal of Molecular Sciences, 2019, 20, 5091.	4.1	14
25	Intracrine Endorphinergic Systems in Modulation of Myocardial Differentiation. International Journal of Molecular Sciences, 2019, 20, 5175.	4.1	2
26	Lessons from human umbilical cord: gender differences in stem cells from Wharton's jelly. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2019, 234, 143-148.	1.1	18
27	Physical stimulation by REAC and BMP4/WNT-1 inhibitor synergistically enhance cardiogenic commitment in iPSCs. PLoS ONE, 2019, 14, e0211188.	2.5	8
28	Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 2646.	4.1	4
29	Zebrafish embryo extract counteracts human stem cell senescence. Frontiers in Bioscience - Scholar, 2019, 11, 89-104.	2.1	3
30	Physical energies to the rescue of damaged tissues. World Journal of Stem Cells, 2019, 11, 297-321.	2.8	16
31	Orchestrating stem cell fate: Novel tools for regenerative medicine. World Journal of Stem Cells, 2019, 11, 464-475.	2.8	17
32	Restoring In Vivo-Like Membrane Lipidomics Promotes Exosome Trophic Behavior from Human Placental Mesenchymal Stromal/Stem Cells. Cell Transplantation, 2018, 27, 55-69.	2.5	10
33	Comparison of Oxidative Stress Effects on Senescence Patterning of Human Adult and Perinatal Tissue-Derived Stem Cells in Short and Long-term Cultures. International Journal of Medical Sciences, 2018, 15, 1486-1501.	2.5	28
34	Melatonin and Vitamin D Orchestrate Adipose Derived Stem Cell Fate by Modulating Epigenetic Regulatory Genes. International Journal of Medical Sciences, 2018, 15, 1631-1639.	2.5	23
35	Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells International, 2018, 2018, 1-8.	2.5	15
36	Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling. International Journal of Molecular Sciences, 2018, 19, 1410.	4.1	21

#	Article	IF	CITATIONS
37	MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior. Molecules, 2018, 23, 282.	3.8	35
38	Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2017, 18, 981.	4.1	55
39	Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells International, 2016, 2016, 1-8.	2.5	34
40	Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science. Methods in Molecular Biology, 2016, 1416, 109-122.	0.9	24
41	â€~Observational medicine': registries and Electronic Health Recording for science and health systems governance. European Journal of Heart Failure, 2016, 18, 1093-1095.	7.1	6
42	Adipose Tissue and Mesenchymal Stem Cells: State of the Art and Lipogems® Technology Development. Current Stem Cell Reports, 2016, 2, 304-312.	1.6	171
43	Biophysical signalling from and to the (stem) cells: a novel path to regenerative medicine. European Journal of Heart Failure, 2016, 18, 1405-1407.	7.1	1
44	REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Scientific Reports, 2016, 6, 28682.	3.3	36
45	Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson's disease. Scientific Reports, 2015, 5, 10439.	3.3	41
46	Occurring ofln VitroFunctional Vasculogenic Pericytes from Human Circulating Early Endothelial Precursor Cell Culture. Stem Cells International, 2015, 2015, 1-11.	2.5	8
47	Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells. Current Pharmaceutical Biotechnology, 2015, 16, 782-792.	1.6	10
48	Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age, 2014, 36, 9-20.	3.0	36
49	Dissecting histone deacetylase role in pulmonary arterial smooth muscle cell proliferation and migration. Biochemical Pharmacology, 2014, 91, 181-190.	4.4	24
50	Life Rhythm as a Symphony of Oscillatory Patterns: Electromagnetic Energy and Sound Vibration Modulates gene Expression for Biological Signaling and Healing. Global Advances in Health and Medicine, 2014, 3, 40-55.	1.6	33
51	Radioelectric Asymmetric Conveyed Fields and Human Adipose-Derived Stem Cells Obtained with a Nonenzymatic Method and Device: A Novel Approach to Multipotency. Cell Transplantation, 2014, 23, 1489-1500.	2.5	70
52	Regenerative medicine approach to repair the failing heart. Vascular Pharmacology, 2013, 58, 159-163.	2.1	11
53	Sodium butyrate inhibits plateletâ€derived growth factorâ€induced proliferation and migration in pulmonary artery smooth muscle cells through <scp>A</scp> kt inhibition. FEBS Journal, 2013, 280, 2042-2055.	4.7	41
54	New Trial Designs and Potential Therapies for Pulmonary Artery Hypertension. Journal of the American College of Cardiology, 2013, 62, D82-D91.	2.8	113

#	Article	IF	CITATIONS
55	Tuning stem cell fate with physical energies. Cytotherapy, 2013, 15, 1441-1443.	0.7	3
56	Radio Electric Conveyed Fields Directly Reprogram Human Dermal Skin Fibroblasts toward Cardiac, Neuronal, and Skeletal Muscle-Like Lineages. Cell Transplantation, 2013, 22, 1227-1235.	2.5	66
57	A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-Like Elements by Mild Mechanical Forces from Human Lipoaspirates. Cell Transplantation, 2013, 22, 2063-2077.	2.5	259
58	Effects of regenerative radioelectric asymmetric conveyer treatment on human normal and osteoarthritic chondrocytes exposed to IL-1β. A biochemical and morphological study. Clinical Interventions in Aging, 2013, 8, 309.	2.9	28
59	Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment. Drug Design, Development and Therapy, 2013, 7, 1063.	4.3	31
60	Mesenchymal Stem Cells and Islet Cotransplantation in Diabetic Rats: Improved Islet Graft Revascularization and Function by Human Adipose Tissue-Derived Stem Cells Preconditioned with Natural Molecules. Cell Transplantation, 2012, 21, 2771-2781.	2.5	72
61	Radiofrequency Energy Loop Primes Cardiac, Neuronal, and Skeletal Muscle Differentiation in Mouse Embryonic Stem Cells: A New Tool for Improving Tissue Regeneration. Cell Transplantation, 2012, 21, 1225-1233.	2.5	66
62	Rosuvastatin elicits KDR-dependent vasculogenic response of human placental stem cells through PI3K/AKT pathway. Pharmacological Research, 2012, 65, 275-284.	7.1	23
63	Regenerative treatment using a radioelectric asymmetric conveyor as a novel tool in antiaging medicine: an in vitro beta-galactosidase study. Clinical Interventions in Aging, 2012, 7, 191.	2.9	36
64	Cardiac Regenerative Medicine Without Stem Cell Transplantation. , 2012, , 331-340.		0
65	Cardiac Versus Non-Cardiac Stem Cells to Repair the Heart: The Role of Autocrine/Paracrine Signals. , 2012, , 367-382.		0
66	Nanomechanics to Drive Stem Cells in Injured Tissues: Insights from Current Research and Future Perspectives. Stem Cells and Development, 2011, 20, 561-568.	2.1	23
67	Mesenchymal Stem Cells in Renal Function Recovery after Acute Kidney Injury: Use of a Differentiating Agent in a Rat Model. Cell Transplantation, 2011, 20, 1193-1208.	2.5	40
68	Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. Cardiovascular Research, 2011, 90, 546-556.	3.8	59
69	Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure. Heart Failure Reviews, 2010, 15, 531-542.	3.9	48
70	Hyaluronan Mixed Esters of Butyric and Retinoic Acid Affording Myocardial Survival and Repair without Stem Cell Transplantation. Journal of Biological Chemistry, 2010, 285, 9949-9961.	3.4	58
71	Cardiomyocyte proliferation: paving the way for cardiac regenerative medicine without stem cell transplantation. Cardiovascular Research, 2010, 85, 643-644.	3.8	1
72	Hyaluronan Esters Drive Smad Gene Expression and Signaling Enhancing Cardiogenesis in Mouse Embryonic and Human Mesenchymal Stem Cells. PLoS ONE, 2010, 5, e15151.	2.5	36

#	Article	IF	CITATIONS
73	Future Perspectives for the Treatment of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S108-S117.	2.8	62
74	Stem Cells and Cardiovascular Repair: A Role for Natural and Synthetic Molecules Harboring Differentiating and Paracrine Logics. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 60-68.	1.0	10
75	Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment. Regenerative Medicine, 2007, 2, 193-202.	1.7	8
76	Hyaluronan Mixed Esters of Butyric and Retinoic Acid Drive Cardiac and Endothelial Fate in Term Placenta Human Mesenchymal Stem Cells and Enhance Cardiac Repair in Infarcted Rat Hearts. Journal of Biological Chemistry, 2007, 282, 14243-14252.	3.4	152
77	Mild exercise training, cardioprotection and stress genes profile. European Journal of Applied Physiology, 2007, 99, 503-510.	2.5	62
78	CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation. Evidence-based Complementary and Alternative Medicine, 2005, 2, 277-283.	1.2	25
79	Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB Journal, 2005, 19, 155-157.	0.5	81
80	Butyric and Retinoic Mixed Ester of Hyaluronan. Journal of Biological Chemistry, 2004, 279, 23574-23579.	3.4	72
81	Protein Kinase C Signaling Transduces Endorphin-Primed Cardiogenesis in GTR1 Embryonic Stem Cells. Circulation Research, 2003, 92, 617-622.	4.5	54
82	Dynorphin B Is an Agonist of Nuclear Opioid Receptors Coupling Nuclear Protein Kinase C Activation to the Transcription of Cardiogenic Genes in GTR1 Embryonic Stem Cells. Circulation Research, 2003, 92, 623-629.	4.5	68
83	PKC/Raf/MEK/ERK signaling pathway modulates native-LDL-induced E2F-1 gene expression and endothelial cell proliferation. Cardiovascular Research, 2003, 59, 934-944.	3.8	45
84	The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Archives of Biochemistry and Biophysics, 2002, 403, 209-218.	3.0	63
85	Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMIâ€A down regulates câ€ <i>myc</i> gene expression and endothelial cell proliferation. FEBS Journal, 2002, 269, 5861-5870.	0.2	67
86	Opioid Peptide Gene Expression Primes Cardiogenesis in Embryonal Pluripotent Stem Cells. Circulation Research, 2000, 87, 189-194.	4.5	87
87	Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovascular Research, 2000, 45, 1054-1064.	3.8	35
88	Heparin down-regulates the phorbol ester-induced protein kinase C gene expression in human endothelial cells: enzyme-mediated autoregulation of protein kinase C-α and -δgenes1. FEBS Letters, 1999, 449, 135-140.	2.8	8
89	Heparin inhibits phorbol ester-induced ornithine decarboxylase gene expression in endothelial cells. FEBS Letters, 1998, 423, 98-104.	2.8	9
90	Nuclear Opioid Receptors Activate Opioid Peptide Gene Transcription in Isolated Myocardial Nuclei. Journal of Biological Chemistry, 1998, 273, 13383-13386.	3.4	46

#	Article	IF	CITATIONS
91	Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster. Journal of Biological Chemistry, 1997, 272, 6685-6692.	3.4	30
92	Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster. Journal of Biological Chemistry, 1997, 272, 6699-6705.	3.4	31
93	Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster. Journal of Biological Chemistry, 1997, 272, 6693-6698.	3.4	17
94	Phorbol Ester Regulation of Opioid Peptide Gene Expression in Myocardial Cells. Journal of Biological Chemistry, 1995, 270, 30115-30120.	3.4	32
95	Comparison between alpha-adrenergic- and K-opioidergic-mediated inositol(1,4,5)P3/inositol(1,3,4,5)P4 formation in adult cultured rat ventricular cardiomyocytes. Biochemical and Biophysical Research Communications, 1991, 179, 972-978.	2.1	39
96	Opioid receptors in rat cardiac sarcolemma: effect of phenylephrine and isoproterenol. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 69-74.	2.6	125
97	Reduced mechanical activity of perfused rat heart following morphine or enkephalin peptides administration. Life Sciences, 1985, 37, 1327-1333.	4.3	34
98	Inhibition of rat heart superoxidase dismutase activity by diethyldithiocarbamate and its effect on mitochondrial function. Biochemical Pharmacology, 1981, 30, 2174-2176.	4.4	14