Alessio Sapienza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2074537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Applied Thermal Engineering, 2015, 82, 1-7.	3.0	185
2	Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Applied Thermal Engineering, 2016, 104, 85-95.	3.0	111
3	Influence of the management strategy and operating conditions on the performance of an adsorption chiller. Energy, 2011, 36, 5532-5538.	4.5	94
4	Adsorption chilling driven by low temperature heat: New adsorbent and cycle optimization. Applied Thermal Engineering, 2012, 32, 141-146.	3.0	85
5	Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers. Applied Energy, 2014, 134, 11-19.	5.1	78
6	An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers. Applied Energy, 2016, 179, 929-938.	5.1	78
7	Development and lab-test of a mobile adsorption air-conditioner. International Journal of Refrigeration, 2012, 35, 701-708.	1.8	73
8	Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method. Applied Energy, 2014, 113, 1244-1251.	5.1	64
9	Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent "silica modified by calcium nitrateâ€; International Journal of Refrigeration, 2012, 35, 518-524.	1.8	63
10	Recent advancements in sorption technology for solar thermal energy storage applications. Solar Energy, 2019, 192, 69-105.	2.9	60
11	Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair. Applied Energy, 2016, 174, 15-24.	5.1	59
12	Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications. Applied Energy, 2018, 216, 620-633.	5.1	55
13	Experimental and theoretical analysis of the kinetic performance of an adsorbent coating composition for use in adsorption chillers and heat pumps. Applied Thermal Engineering, 2014, 73, 1022-1031.	3.0	54
14	Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications. Applied Energy, 2016, 183, 1157-1167.	5.1	53
15	Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling. Applied Thermal Engineering, 2016, 98, 900-909.	3.0	53
16	Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Materials and Solar Cells, 2017, 160, 225-232.	3.0	52
17	MgSO4·7H2O filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 2018, 173, 1278-1286.	2.9	52
18	Tri-generation for industrial applications: Development of a simulation model for a gasification-SOFC based system. International Journal of Hydrogen Energy, 2017, 42, 27866-27883.	3.8	50

#	Article	IF	CITATIONS
19	Adsorption Heat Storage: State-of-the-Art and Future Perspectives. Nanomaterials, 2018, 8, 522.	1.9	50
20	"Water - Silica Siogel―working pair for adsorption chillers: Adsorption equilibrium and dynamics. Renewable Energy, 2017, 110, 40-46.	4.3	48
21	Experimental investigation of a latent heat storage for solar cooling applications. Applied Energy, 2017, 199, 347-358.	5.1	47
22	Adsorption-compression cascade cycles: An experimental study. Energy Conversion and Management, 2018, 156, 365-375.	4.4	46
23	Thermal performance of hybrid cement mortar-PCMs for warm climates application. Solar Energy Materials and Solar Cells, 2019, 193, 270-280.	3.0	44
24	A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller. Applied Energy, 2017, 205, 1081-1090.	5.1	39
25	An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages. Renewable Energy, 2019, 138, 1018-1027.	4.3	37
26	Experimental testing of AQSOA FAM Z02/water adsorption system for heat and cold storage. Applied Thermal Engineering, 2017, 124, 967-974.	3.0	36
27	Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Applied Thermal Engineering, 2014, 72, 229-236.	3.0	34
28	Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications. International Journal of Refrigeration, 2019, 105, 92-100.	1.8	34
29	Adsorption cooling utilizing the "LiBr/silica – ethanol―working pair: Dynamic optimization of the adsorber/heat exchanger unit. Energy, 2014, 75, 390-399.	4.5	33
30	Increasing the share of renewables through adsorption solar cooling: A validated case study. Renewable Energy, 2017, 110, 126-140.	4.3	31
31	Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage. Solar Energy Materials and Solar Cells, 2019, 193, 133-140.	3.0	30
32	A CCHP system based on ORC cogenerator and adsorption chiller experimental prototypes: Energy and economic analysis for NZEB applications. Applied Thermal Engineering, 2021, 183, 116119.	3.0	30
33	On the impact of different management strategies on the performance of a two-bed activated carbon/ethanol refrigerator: An experimental study. Energy Conversion and Management, 2017, 142, 322-333.	4.4	29
34	Energy balance and life cycle assessment of small size residential solar heating and cooling systems equipped with adsorption chillers. Solar Energy, 2017, 158, 543-558.	2.9	29
35	Magnesium sulphate-silicone foam composites for thermochemical energy storage: Assessment of dehydration behaviour and mechanical stability. Solar Energy Materials and Solar Cells, 2019, 200, 109992.	3.0	28
36	Comparative analysis of thermal energy storage technologies through the definition of suitable key performance indicators. Energy and Buildings, 2019, 185, 88-102.	3.1	28

#	Article	IF	CITATIONS
37	A dynamic multi-level model for adsorptive solar cooling. Renewable Energy, 2012, 43, 301-312.	4.3	25
38	Atomistic modelling of water transport and adsorption mechanisms in silicoaluminophosphate for thermal energy storage. Applied Thermal Engineering, 2019, 160, 114075.	3.0	25
39	Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage. Applied Energy, 2019, 248, 299-309.	5.1	25
40	Components and design guidelines for solar cooling systems: The experience of ZEOSOL. Renewable Energy, 2019, 141, 678-692.	4.3	25
41	Study of sorption systems for application on low-emission fishing vessels. Energy, 2017, 134, 554-565.	4.5	24
42	Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models. Energies, 2019, 12, 1161.	1.6	23
43	Dynamics study of ethanol adsorption on microporous activated carbon for adsorptive cooling applications. Applied Thermal Engineering, 2016, 105, 28-38.	3.0	22
44	Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application. Applied Energy, 2022, 311, 118673.	5.1	21
45	A simplified approach for modelling latent heat storages: Application and validation on two different fin-and-tubes heat exchangers. Applied Thermal Engineering, 2017, 125, 41-52.	3.0	19
46	Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger. Energy Conversion and Management, 2019, 200, 112121.	4.4	19
47	Dramatic effect of residual gas on dynamics of isobaric adsorption stage of an adsorptive chiller. Applied Thermal Engineering, 2016, 96, 385-390.	3.0	18
48	Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems. Renewable Energy, 2020, 150, 428-434.	4.3	17
49	Morphological and Structural Evaluation of Hydration/Dehydration Stages of MgSO4 Filled Composite Silicone Foam for Thermal Energy Storage Applications. Applied Sciences (Switzerland), 2020, 10, 453.	1.3	17
50	Design of an Innovative Graphite Exchanger for Adsorption Heat Pumps and Chillers. Energy Procedia, 2015, 81, 1030-1040.	1.8	16
51	Assessment of the hydration/dehydration behaviour of MgSO4â^™7H2O filled cellular foams for sorption storage applications through morphological and thermo-gravimetric analyses. Sustainable Materials and Technologies, 2018, 17, e00073.	1.7	16
52	Techno-Economic Analysis of Solar Cooling Systems for Residential Buildings in Italy. Journal of Solar Energy Engineering, Transactions of the ASME, 2016, 138, .	1.1	13
53	A Simulation Tool to Evaluate the Feasibility of a gasification-I.C.E. System to Produce Heat and Power for Industrial Applications. Energy Procedia, 2016, 101, 1256-1263.	1.8	13
54	Performance Results of a Solar Adsorption Cooling and Heating Unit. Energies, 2020, 13, 1630.	1.6	13

#	Article	IF	CITATIONS
55	An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings. Energies, 2021, 14, 914.	1.6	13
56	Dynamic Simulation and Performance Analysis of Solar Cooling Systems in Italy. Energy Procedia, 2015, 81, 1171-1183.	1.8	12
57	Plastic heat exchangers for adsorption cooling: Thermodynamic and dynamic performance. Applied Thermal Engineering, 2021, 188, 116622.	3.0	12
58	Experimental comparison of two heat exchanger concepts for latent heat storage applications. Energy Procedia, 2017, 135, 183-192.	1.8	11
59	Latent Thermal Storage for Solar Cooling Applications: Materials Characterization and Numerical Optimization of Finned Storage Configurations. Heat Transfer Engineering, 2019, 40, 1033-1048.	1.2	11
60	Thermodynamic Performance of Adsorption Working Pairs for Low-Temperature Waste Heat Upgrading in Industrial Applications. Applied Sciences (Switzerland), 2021, 11, 3389.	1.3	10
61	Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage. Energies, 2021, 14, 8195.	1.6	10
62	Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis. Energies, 2021, 14, 2580.	1.6	9
63	Adsorption Cold Storage for Mobile Applications. Applied Sciences (Switzerland), 2020, 10, 2044.	1.3	7
64	Innovative Adsorption Chiller for Marine Applications: Design and Building. Energy Procedia, 2015, 82, 432-438.	1.8	6
65	Dynamic simulation of a multi-generation system, for electric and cooling energy provision, employing a SOFC cogenerator and an adsorption chiller. Energy Procedia, 2017, 143, 416-423.	1.8	5
66	Experimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal Energy Storage for Hot Water Provision on Ships. Energies, 2022, 15, 2596.	1.6	5
67	Life Cycle Assessment (LCA) of an Innovative Compact Hybrid Electrical-Thermal Storage System for Residential Buildings in Mediterranean Climate. Sustainability, 2021, 13, 5322.	1.6	4
68	Evaluation of ad/desorption dynamics of S-PEEK/Zeolite composite coatings by T-LTJ method. Applied Thermal Engineering, 2022, 208, 118262.	3.0	4
69	A dynamic model of a solar driven trigeneration system based on micro-ORC and adsorption chiller prototypes. AIP Conference Proceedings, 2019, , .	0.3	3
70	Sorption Thermal Energy Storage. Green Energy and Technology, 2019, , 33-54.	0.4	3
71	Life Cycle Assessment of an Innovative Hybrid Energy Storage System for Residential Buildings in Continental Climates. Applied Sciences (Switzerland), 2021, 11, 3820.	1.3	3
72	A Fast-Reduced Model for an Innovative Latent Thermal Energy Storage for Direct Integration in Heat Pumps. Applied Sciences (Switzerland), 2021, 11, 8972.	1.3	2

#	Article	IF	CITATIONS
73	Analysis of the Potential of Solarâ€Assisted Heat Pumps: Technical, Market, and Social Acceptance Aspects. Solar Rrl, 2022, 6, .	3.1	2
74	Study and Evaluation of Two Innovative Waste-heat Driven Refrigeration Systems for Fishing Vessels Applications. Energy Procedia, 2016, 101, 838-845.	1.8	1
75	Experimental Characterization of Sorption Thermal Energy Storage Systems. Green Energy and Technology, 2019, , 201-225.	0.4	0
76	Optimization of an "Adsorbent/Heat Exchanger―Unit. SpringerBriefs in Applied Sciences and Technology, 2018, , 69-87.	0.2	0
77	A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps. Energies, 2021, 14, 7470.	1.6	0