
Abhinav Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2074518/publications.pdf Version: 2024-02-01

ARHINAV CUDTA

#	Article	IF	CITATIONS
1	Probabilistic risk assessment based model validation method using Bayesian network. Reliability Engineering and System Safety, 2018, 169, 380-393.	8.9	56
2	Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics. Nuclear Engineering and Design, 2017, 315, 20-34.	1.7	47
3	Ritz vector approach for evaluating incabinet response spectra. Nuclear Engineering and Design, 1999, 190, 255-272.	1.7	40
4	Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian Sea. Oceanography, 2017, 30, 172-185.	1.0	33
5	A genetic algorithm for design of moment-resisting steel frames. Structural and Multidisciplinary Optimization, 2011, 44, 559-574.	3.5	31
6	Seismic fragility of threaded Tee-joint connections in piping systems. International Journal of Pressure Vessels and Piping, 2015, 132-133, 106-118.	2.6	30
7	Modified Ritz vector approach for dynamic properties of electrical cabinets and control panels. Nuclear Engineering and Design, 2002, 217, 49-62.	1.7	25
8	Rocking stiffness of mounting arrangements in electrical cabinets and control panels. Nuclear Engineering and Design, 2003, 219, 127-141.	1.7	21
9	Modeling the Dynamic Behavior of Electrical Cabinets and Control Panels: Experimental and Analytical Results. Journal of Structural Engineering, 2004, 130, 511-519.	3.4	20
10	Suppression of vortex shedding in flow around a square cylinder using control cylinder. European Journal of Mechanics, B/Fluids, 2019, 76, 276-291.	2.5	18
11	Computationally efficient fragility assessment using equivalent elastic limit state and Bayesian updating. Computers and Structures, 2018, 197, 1-11.	4.4	16
12	Current state of in-cabinet response spectra for seismic qualification of equipment in nuclear power plants. Nuclear Engineering and Design, 2019, 343, 269-275.	1.7	16
13	Neural closure models for dynamical systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	16
14	Genetic Algorithm-Based Decision Support for Optimizing Seismic Response of Piping Systems. Journal of Structural Engineering, 2005, 131, 389-398.	3.4	15
15	Significance of non-classical damping in seismic qualification of equipment and piping. Nuclear Engineering and Design, 2017, 317, 90-99.	1.7	14
16	Real-time sediment plume modeling in the Southern California bight. , 2018, , .		14
17	Missing Mass Effect in Coupled Analysis. I: Complex Modal Properties. Journal of Structural Engineering, 1998, 124, 490-495.	3.4	13
18	Fish Modeling and Bayesian Learning for the Lakshadweep Islands. , 2019		13

Αβηίναν Gupta

#	Article	IF	CITATIONS
19	Risk informed validation framework for external flooding scenario. Nuclear Engineering and Design, 2020, 356, 110377.	1.7	13
20	Significance of multi-hazard risk in design of buildings under earthquake and wind loads. Engineering Structures, 2021, 243, 112623.	5.3	13
21	Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model. Nuclear Engineering and Design, 2015, 295, 576-586.	1.7	12
22	Seismic fragility of RC shear walls in nuclear power plant part 2: Influence of uncertainty in material parameters on fragility of concrete shear walls. Nuclear Engineering and Design, 2015, 295, 587-596.	1.7	10
23	A reconciliation of experimental and analytical results for piping systems. International Journal of Steel Structures, 2016, 16, 1043-1055.	1.3	10
24	Seismic response of electrical equipment subjected to high–frequency ground motions. Nuclear Engineering and Design, 2021, 374, 111046.	1.7	10
25	Missing Mass Effect in Coupled Analysis. II: Residual Response. Journal of Structural Engineering, 1998, 124, 496-500.	3.4	9
26	Consideration of uncertainties in seismic analysis of coupled building piping systems. Nuclear Engineering and Design, 2005, 235, 2071-2086.	1.7	9
27	Structural fragility of T-joint connections in large-scale piping systems using equivalent elastic time-history simulations. Structural Safety, 2017, 65, 49-59.	5.3	9
28	Enhancement of risk informed validation framework for external hazard scenario. Reliability Engineering and System Safety, 2020, 204, 107140.	8.9	9
29	Piping Fragility Evaluation: Interaction With High-Rise Building Performance. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.6	7
30	Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems. Lecture Notes in Computer Science, 2020, , 208-216.	1.3	7
31	Fragility Evaluation in Building-Piping Systems: Effect of Piping Interaction With Buildings. Journal of Pressure Vessel Technology, Transactions of the ASME, 2019, 141, .	0.6	5
32	Modeling the behavior of reinforced concrete slabs subjected to impact. Nuclear Engineering and Design, 2021, 385, 111512.	1.7	5
33	Bayesian Network Technique in Probabilistic Risk Assessment for Multiple Hazards. , 2016, , .		4
34	Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness. International Journal of Steel Structures, 2018, 18, 1200-1209.	1.3	4
35	Limitations of traditional tools for beyond design basis external hazard PRA. Nuclear Engineering and Design, 2020, 370, 110899.	1.7	4
36	A Methodological Approach to Update Ground Motion Prediction Models Using Bayesian Inference. Pure and Applied Geophysics, 2022, 179, 247-264.	1.9	4

Αβηίναν Gupta

#	Article	IF	CITATIONS
37	Combination of modal responses: A closed-form formulation for rigid response coefficient. Nuclear Engineering and Design, 2007, 237, 2075-2082.	1.7	3
38	Performance-Based Reliability of ASME Piping Design Equations. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.6	3
39	Flow Maps and Coherent Sets for Characterizing Residence Times and Connectivity in Lagoons and Coral Reefs: The Case of the Red Sea. , 2019, , .		3
40	SeaVizKit: Interactive Maps for Ocean Visualization. , 2019, , .		3
41	Seismic Fragility of Piping Nozzles in Nuclear Power Plants: A Case for Updating the Current State-of-Practice. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.6	3
42	Seismic response of tuned single degree of freedom secondary systems. Nuclear Engineering and Design, 1997, 172, 17-25.	1.7	2
43	Application of Risk-Informed Validation Framework to a Flooding Scenario. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2021, 7, 04021044.	1.7	2
44	Redundancy in Residual Vectors for Missing Mass Effect in Coupled Modal Synthesis. Journal of Structural Engineering, 2002, 128, 1231-1235.	3.4	1
45	Sampling of closelyâ€spaced ordered set of uniformly distributed random variables. International Journal for Numerical Methods in Engineering, 2012, 89, 354-370.	2.8	1
46	Understanding the seismic response of electrical equipment subjected to high–frequency ground motions. Progress in Nuclear Energy, 2021, 140, 103915.	2.9	1
47	Digital Engineering for Integrated Modeling and Simulation for Building-Piping Systems Through Interoperability Solutions. Nuclear Science and Engineering, 0, , 1-18.	1.1	1
48	Computational framework for remotely operable laboratories. Engineering With Computers, 2008, 24, 405-415.	6.1	0
49	Simulation of Constrained Variables in Engineering Risk Analyses. American Statistician, 2018, 72, 130-139.	1.6	0
50	A Closed-Form Solution to Characterize the Behavior of Piping T-Joints. International Journal of Steel Structures, 2021, 21, 1398-1407.	1.3	0
51	A Framework for Simulation-Based Internal Flooding Risk Assessment. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.6	0
52	Effect of Boundary Conditions on Seismic Response of Electrical Equipment subjected to High-Frequency Ground Motions. Annals of Nuclear Energy, 2022, 168, 108878.	1.8	0