
## Thomas O Krag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2074494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines, 2022, 10, 304.                                                                         | 1.4 | 0         |
| 2  | Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies.<br>Genes, 2022, 13, 74.                                                       | 1.0 | 4         |
| 3  | Three novel <i>FHL1</i> variants cause a mild phenotype of Emeryâ€Dreifuss muscular dystrophy. Human<br>Mutation, 2022, 43, 1234-1238.                                         | 1.1 | 2         |
| 4  | Approaches for Systemic Delivery of Dystrophin Antisense Peptide Nucleic Acid in the mdx Mouse<br>Model. Nucleic Acid Therapeutics, 2021, 31, 208-219.                         | 2.0 | 7         |
| 5  | 251st ENMC international workshop: Polyglucosan storage myopathies 13–15 December 2019,<br>Hoofddorp, the Netherlands. Neuromuscular Disorders, 2021, 31, 466-477.             | 0.3 | 4         |
| 6  | Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success.<br>Cells, 2021, 10, 533.                                                   | 1.8 | 19        |
| 7  | No effect of resveratrol in patients with mitochondrial myopathy: A crossâ€over randomized controlled trial. Journal of Inherited Metabolic Disease, 2021, 44, 1186-1198.      | 1.7 | 4         |
| 8  | Autophagy is affected in patients with hypokalemic periodic paralysis: an involvement in vacuolar myopathy?. Acta Neuropathologica Communications, 2021, 9, 109.               | 2.4 | 2         |
| 9  | Myopathy can be a key phenotype of membrin (GOSR2) deficiency. Human Mutation, 2021, 42, 1101-1106.                                                                            | 1.1 | 3         |
| 10 | Novel Homozygous Truncating Variant Widens the Spectrum of Early-Onset Multisystemic SYNE1<br>Ataxia. Cerebellum, 2021, , 1.                                                   | 1.4 | 0         |
| 11 | Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Molecular Metabolism, 2021, 53, 101271.                                | 3.0 | 27        |
| 12 | Muscle biopsy and <scp>MRI</scp> findings in <scp>ANO5</scp> â€related myopathy. Muscle and Nerve,<br>2021, 64, 743-748.                                                       | 1.0 | 6         |
| 13 | Extreme Hypoxia Causing Brady-Arrythmias During Apnea in Elite Breath-Hold Divers. Frontiers in<br>Physiology, 2021, 12, 712573.                                               | 1.3 | 2         |
| 14 | Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion, 2020, 50, 35-41.                                                                | 1.6 | 38        |
| 15 | Vacuoles, Often Containing Glycogen, Are a Consistent Finding in Hypokalemic Periodic Paralysis.<br>Journal of Neuropathology and Experimental Neurology, 2020, 79, 1127-1129. | 0.9 | 2         |
| 16 | MYASTHENIA & amp; RELATED DISORDERS. Neuromuscular Disorders, 2020, 30, S58.                                                                                                   | 0.3 | 0         |
| 17 | MUSCLE FUNCTION & amp; HOMEOSTASIS / MOLECULAR THERAPEUTIC APPROACHES. Neuromuscular Disorders, 2020, 30, S68.                                                                 | 0.3 | 0         |
| 18 | LIMB GIRDLE MUSCULAR DYSTROPHIES. Neuromuscular Disorders, 2020, 30, S90.                                                                                                      | 0.3 | 0         |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preserved Capacity for Adaptations in Strength and Muscle Regulatory Factors in Elderly in Response to Resistance Exercise Training and Deconditioning. Journal of Clinical Medicine, 2020, 9, 2188.                                    | 1.0 | 10        |
| 20 | No effect of oral sucrose or IV glucose during exercise in phosphorylase b kinase deficiency.<br>Neuromuscular Disorders, 2020, 30, 340-345.                                                                                            | 0.3 | 4         |
| 21 | Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal<br>Models. International Journal of Molecular Sciences, 2020, 21, 9621.                                                                     | 1.8 | 13        |
| 22 | Results of an open label feasibility study of sodium valproate in people with McArdle disease.<br>Neuromuscular Disorders, 2020, 30, 734-741.                                                                                           | 0.3 | 3         |
| 23 | A single c.1715G>C calpain 3 gene variant causes dominant calpainopathy with loss of calpain 3 expression and activity. Human Mutation, 2020, 41, 1507-1513.                                                                            | 1.1 | 15        |
| 24 | Depletion of ATP Limits Membrane Excitability of Skeletal Muscle by Increasing Both ClC1-Open<br>Probability and Membrane Conductance. Frontiers in Neurology, 2020, 11, 541.                                                           | 1.1 | 9         |
| 25 | Effect of Aerobic Exercise Training and Deconditioning on Oxidative Capacity and Muscle<br>Mitochondrial Enzyme Machinery in Young and Elderly Individuals. Journal of Clinical Medicine, 2020,<br>9, 3113.                             | 1.0 | 16        |
| 26 | O.14B3GNT4 deficiency: a new α-dystroglycanopathy causing late-onset progressive brain atrophy and muscular dystrophy. Neuromuscular Disorders, 2019, 29, S118-S119.                                                                    | 0.3 | 0         |
| 27 | <i>POPDC3</i> Gene Variants Associate with a New Form of Limb Girdle Muscular Dystrophy. Annals of Neurology, 2019, 86, 832-843.                                                                                                        | 2.8 | 27        |
| 28 | P.119Analysis of the structural and metabolic consequences of McArdle disease using the murine model. Neuromuscular Disorders, 2019, 29, S83.                                                                                           | 0.3 | 0         |
| 29 | Deep morphological analysis of muscle biopsies from type III glycogenesis (GSDIII), debranching enzyme deficiency, revealed stereotyped vacuolar myopathy and autophagy impairment. Acta Neuropathologica Communications, 2019, 7, 167. | 2.4 | 17        |
| 30 | Palbociclib in combination with simvastatin induce severe rhabdomyolysis: a case report. BMC<br>Neurology, 2019, 19, 247.                                                                                                               | 0.8 | 13        |
| 31 | Low survival rate and muscle fiber-dependent aging effects in the McArdle disease mouse model.<br>Scientific Reports, 2019, 9, 5116.                                                                                                    | 1.6 | 11        |
| 32 | Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response<br>to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Cells, 2019, 8, 237.                                      | 1.8 | 20        |
| 33 | IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity.<br>American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E940-E947.                                                 | 1.8 | 48        |
| 34 | Absence of p.R50X Pygm read-through in McArdle disease cellular models. DMM Disease Models and Mechanisms, 2019, 13, .                                                                                                                  | 1.2 | 4         |
| 35 | Expanding the phenotype of filamin-C-related myofibrillar myopathy. Clinical Neurology and Neurosurgery, 2019, 176, 30-33.                                                                                                              | 0.6 | 8         |
| 36 | Collagen XII myopathy with rectus femoris atrophy and collagen XII retention in fibroblasts. Muscle and Nerve, 2018, 57, 1026-1030.                                                                                                     | 1.0 | 11        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Limb girdle muscular dystrophy due to mutations in <i>POMT2</i> . Journal of Neurology,<br>Neurosurgery and Psychiatry, 2018, 89, 506-512.                                                                                                                                     | 0.9 | 21        |
| 38 | Exercising with blocked muscle glycogenolysis: Adaptation in the McArdle mouse. Molecular Genetics and Metabolism, 2018, 123, 21-27.                                                                                                                                           | 0.5 | 5         |
| 39 | DMD TREATMENT: ANIMAL MODELS. Neuromuscular Disorders, 2018, 28, S96.                                                                                                                                                                                                          | 0.3 | Ο         |
| 40 | BAG3 myopathy is not always associated with cardiomyopathy. Neuromuscular Disorders, 2018, 28, 798-801.                                                                                                                                                                        | 0.3 | 11        |
| 41 | Glycogen Synthesis in Glycogenin 1–Deficient Patients: A Role for Glycogenin 2 in Muscle. Journal of<br>Clinical Endocrinology and Metabolism, 2017, 102, 2690-2700.                                                                                                           | 1.8 | 16        |
| 42 | Clinical heterogeneity and phenotype/genotype findings in 5 families with <i>GYG1</i> deficiency.<br>Neurology: Genetics, 2017, 3, e208.                                                                                                                                       | 0.9 | 12        |
| 43 | New advances in McArdle disease: Characterization of the p.R50X knock-in mouse model and evaluation of new therapeutic approaches. Neuromuscular Disorders, 2016, 26, S199.                                                                                                    | 0.3 | Ο         |
| 44 | Muscle involvement in limb-girdle muscular dystrophy with GMPPB deficiency (LGMD2T). Neurology:<br>Genetics, 2016, 2, e112.                                                                                                                                                    | 0.9 | 29        |
| 45 | Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease. Journal of Neuropathology and Experimental Neurology, 2016, 75, 441-454.                                                                                                                       | 0.9 | 24        |
| 46 | Differential glucose metabolism in mice and humans affected by McArdle disease. American Journal of<br>Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R307-R314.                                                                                   | 0.9 | 11        |
| 47 | A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I<br>Mutation Mimicking the Mild Phenotype in Humans. Journal of Neuropathology and Experimental<br>Neurology, 2015, 74, 1137-1146.                                                  | 0.9 | 3         |
| 48 | A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I<br>Mutation Mimicking the Mild Phenotype in Humans. Journal of Neuropathology and Experimental<br>Neurology, 2015, 74, 1137-1146.                                                  | 0.9 | 18        |
| 49 | Molecular, morphological and physiological studies in a mouse model of McArdle disease: Similarities to the human disease. Neuromuscular Disorders, 2015, 25, S219.                                                                                                            | 0.3 | 0         |
| 50 | Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and<br>Dystrophic Muscle. Molecular Therapy - Nucleic Acids, 2015, 4, e267.                                                                                                             | 2.3 | 10        |
| 51 | Effect of treatment with grow factors on muscle pathology in the mdx mouse model of Duchenne muscular dystrophy. Neuromuscular Disorders, 2015, 25, S291.                                                                                                                      | 0.3 | 0         |
| 52 | Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients<br>after endurance exercise: a placebo-controlled crossover study. American Journal of Physiology -<br>Regulatory Integrative and Comparative Physiology, 2015, 308, R123-R130. | 0.9 | 15        |
| 53 | Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy<br>Model. PLoS ONE, 2014, 9, e100594.                                                                                                                                         | 1.1 | 22        |
| 54 | A pilot study of muscle plasma protein changes after exercise. Muscle and Nerve, 2014, 49, 261-266.                                                                                                                                                                            | 1.0 | 15        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of sildenafil on skeletal and cardiac muscle in <scp>B</scp> ecker muscular dystrophy. Annals of Neurology, 2014, 76, 550-557.                                                  | 2.8 | 39        |
| 56 | A novel de novo mutation of the mitochondrial tRNAlys gene mt.8340G>A associated with pure myopathy. Neuromuscular Disorders, 2014, 24, 162-166.                                       | 0.3 | 13        |
| 57 | Anoctamin 5 muscular dystrophy in Denmark: prevalence, genotypes, phenotypes, cardiac findings, and<br>muscle protein expression. Journal of Neurology, 2013, 260, 2084-2093.          | 1.8 | 63        |
| 58 | Muscle biopsies off-set normal cellular signaling in surrounding musculature. Neuromuscular<br>Disorders, 2013, 23, 981-985.                                                           | 0.3 | 1         |
| 59 | Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy.<br>Acta Neurologica Scandinavica, 2013, 128, 194-201.                                    | 1.0 | 15        |
| 60 | Resistance training in patients with limbâ€girdle and becker muscular dystrophies. Muscle and Nerve,<br>2013, 47, 163-169.                                                             | 1.0 | 43        |
| 61 | P.8.12 Mild phenotype in a Limb Girdle muscular dystrophy type 2I mouse model homozygous for the common L276I mutation. Neuromuscular Disorders, 2013, 23, 783.                        | 0.3 | Ο         |
| 62 | A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy.<br>Neuromuscular Disorders, 2013, 23, 562-567.                                                   | 0.3 | 7         |
| 63 | Muscle regeneration in mitochondrial myopathies. Mitochondrion, 2013, 13, 63-70.                                                                                                       | 1.6 | 6         |
| 64 | Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb<br>Girdle Muscular Dystrophy Type 2I. PLoS ONE, 2013, 8, e66929.                  | 1.1 | 7         |
| 65 | A possible role of MAP-1 in skeletal muscle regeneration. Immunobiology, 2012, 217, 1130.                                                                                              | 0.8 | Ο         |
| 66 | Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular<br>dystrophies. BMC Musculoskeletal Disorders, 2012, 13, 43.                          | 0.8 | 49        |
| 67 | G.P.42 Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. Neuromuscular Disorders, 2012, 22, 832. | 0.3 | Ο         |
| 68 | T.P.36 Hepatocyte growth factor reverses atrophy by inducing protein synthesis in mice.<br>Neuromuscular Disorders, 2012, 22, 863.                                                     | 0.3 | 0         |
| 69 | Level of muscle regeneration in limb-girdle muscular dystrophy type 2I relates to genotype and clinical severity. Skeletal Muscle, 2011, 1, 31.                                        | 1.9 | 26        |
| 70 | Short―and longâ€ŧerm effects of endurance training in patients with mitochondrial myopathy. European<br>Journal of Neurology, 2009, 16, 1336-1339.                                     | 1.7 | 44        |
| 71 | No muscle involvement in myoclonusâ€dystonia caused by É›â€sarcoglycan gene mutations. European<br>Journal of Neurology, 2008, 15, 525-529.                                            | 1.7 | 17        |
| 72 | Phenotype and clinical course in a family with a new de novo Twinkle gene mutation. Neuromuscular<br>Disorders, 2008, 18, 306-309.                                                     | 0.3 | 13        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain, 2008, 131, 2824-2831.                                                                          | 3.7  | 100       |
| 74 | Endurance training: An effective and safe treatment for patients with LGMD2I. Neurology, 2007, 68, 59-61.                                                                                          | 1.5  | 79        |
| 75 | Heregulinâ€induced epigenetic regulation of the utrophinâ€A promoter. FEBS Letters, 2007, 581, 4153-4158.                                                                                          | 1.3  | 15        |
| 76 | Deletion of exon 16 of the dystrophin gene is not associated with disease. Human Mutation, 2007, 28, 205-205.                                                                                      | 1.1  | 29        |
| 77 | Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain, 2006, 129, 3402-3412.                                                                      | 3.7  | 184       |
| 78 | Myostatin propeptideâ€mediated amelioration of dystrophic pathophysiology. FASEB Journal, 2005, 19, 543-549.                                                                                       | 0.2  | 219       |
| 79 | Heregulin ameliorates the dystrophic phenotype in mdx mice. Proceedings of the National Academy of<br>Sciences of the United States of America, 2004, 101, 13856-13860.                            | 3.3  | 112       |
| 80 | Therapeutics for Duchenne muscular dystrophy: current approaches and future directions. Journal of Molecular Medicine, 2004, 82, 102-115.                                                          | 1.7  | 91        |
| 81 | Sp1 and the ets-related transcription factor complex GABPÎ $\pm$ /Î <sup>2</sup> functionally cooperate to activate the utrophin promoter. Journal of the Neurological Sciences, 2002, 197, 27-35. | 0.3  | 23        |
| 82 | Functional improvement of dystrophic muscle by myostatin blockade. Nature, 2002, 420, 418-421.                                                                                                     | 13.7 | 748       |
| 83 | Harnessing the potential of dystrophin-related proteins for ameliorating Duchenne's muscular<br>dystrophy. Acta Physiologica Scandinavica, 2001, 171, 349-358.                                     | 2.3  | 20        |
| 84 | Identification of genes that are differentially expressed in extraocular and limb muscle. Journal of the Neurological Sciences, 2000, 179, 76-84.                                                  | 0.3  | 15        |
| 85 | Activation of Utrophin Promoter by Heregulin via the <i>ets</i> -related Transcription Factor Complex GA-binding Protein α/β. Molecular Biology of the Cell, 1999, 10, 2075-2086.                  | 0.9  | 104       |
| 86 | 90-kDa Ribosomal S6 Kinase Is Phosphorylated and Activated by 3-Phosphoinositide-dependent Protein<br>Kinase-1. Journal of Biological Chemistry, 1999, 274, 27168-27176.                           | 1.6  | 220       |
| 87 | Characterization of a glutathione S-transferase and a related glutathione-binding protein from gill of the blue mussel, Mytilus edulis. Biochemical Journal, 1995, 305, 145-150.                   | 1.7  | 72        |