
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2074451/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of mercury species present during coal combustion by thermal desorption. Fuel, 2010, 89, 629-634.	3.4	185
2	Mercury compounds characterization by thermal desorption. Talanta, 2013, 114, 318-322.	2.9	183
3	Stable Lead Isotope Compositions In Selected Coals From Around The World And Implications For Present Day Aerosol Source Tracing. Environmental Science & Technology, 2009, 43, 1078-1085.	4.6	159
4	Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system. Fuel, 2012, 92, 145-157.	3.4	111
5	Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Processing Technology, 2007, 88, 799-805.	3.7	96
6	Speciation of mercury in fly ashes by temperature programmed decomposition. Fuel Processing Technology, 2011, 92, 707-711.	3.7	89
7	Arsenic and Selenium Capture by Fly Ashes at Low Temperature. Environmental Science & Technology, 2006, 40, 3947-3951.	4.6	74
8	Mercury policy and regulations for coal-fired power plants. Environmental Science and Pollution Research, 2012, 19, 1084-1096.	2.7	67
9	Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions. Fuel Processing Technology, 2015, 132, 9-14.	3.7	67
10	Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel Processing Technology, 2011, 92, 1764-1775.	3.7	65
11	A new approach to mercury speciation in solids using a thermal desorption technique. Fuel, 2015, 160, 525-530.	3.4	64
12	Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition. Fuel, 2010, 89, 2157-2159.	3.4	63
13	Retention of mercury in activated carbons in coal combustion and gasification flue gases. Fuel Processing Technology, 2002, 77-78, 353-358.	3.7	60
14	Thallium in coal: Analysis and environmental implications. Fuel, 2013, 105, 13-18.	3.4	59
15	Application of thermal desorption for the identification of mercury species in solids derived from coal utilization. Chemosphere, 2015, 119, 459-465.	4.2	59
16	The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 2009, 88, 1194-1200.	3.4	57
17	Regenerable sorbents for mercury capture in simulated coal combustion flue gas. Journal of Hazardous Materials, 2013, 260, 869-877.	6.5	57
18	The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury. Chemical Engineering Journal, 2011, 174, 86-92.	6.6	54

#	Article	IF	CITATIONS
19	Retention of mercury by low-cost sorbents: Influence of flue gas composition and fly ash occurrence. Chemical Engineering Journal, 2012, 213, 16-21.	6.6	49
20	Influence of a CO2-enriched flue gas on mercury capture by activated carbons. Chemical Engineering Journal, 2015, 262, 1237-1243.	6.6	47
21	Retention of Elemental Mercury in Fly Ashes in Different Atmospheres. Energy & Fuels, 2007, 21, 99-103.	2.5	46
22	Effect of Oxy-Combustion Flue Gas on Mercury Oxidation. Environmental Science & Technology, 2014, 48, 7164-7170.	4.6	46
23	A comparison of devices using thermal desorption for mercury speciation in solids. Talanta, 2016, 150, 272-277.	2.9	46
24	Mercury oxidation in catalysts used for selective reduction of NO x (SCR) in oxy-fuel combustion. Chemical Engineering Journal, 2016, 285, 77-82.	6.6	45
25	Mercury Retention by Fly Ashes from Coal Combustion:Â Influence of the Unburned Carbon Content. Industrial & Engineering Chemistry Research, 2007, 46, 927-931.	1.8	42
26	Analytical methods for mercury analysis in coal and coal combustion by-products. International Journal of Coal Geology, 2012, 94, 44-53.	1.9	41
27	Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems. Fuel, 2015, 148, 98-103.	3.4	41
28	The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant. Fuel, 2012, 102, 773-788.	3.4	40
29	Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. Journal of Environmental Management, 2012, 98, 23-28.	3.8	38
30	Lead isotope ratios in Spanish coals of different characteristics and origin. International Journal of Coal Geology, 2007, 71, 28-36.	1.9	37
31	Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. Chemosphere, 2011, 85, 565-570.	4.2	37
32	Development of Gold Nanoparticle-Doped Activated Carbon Sorbent for Elemental Mercury. Energy & Fuels, 2011, 25, 2022-2027.	2.5	35
33	Study of mercury in by-products from a Dutch co-combustion power station. Journal of Hazardous Materials, 2010, 174, 28-33.	6.5	32
34	Activated carbons from biocollagenic wastes of the leather industry for mercury capture in oxy-combustion. Fuel, 2015, 142, 227-234.	3.4	32
35	Mercury Retention by Fly Ashes from Oxy-fuel Processes. Energy & Fuels, 2015, 29, 2227-2233.	2.5	30
36	Retention of Arsenic and Selenium during Hot Gas Desulfurization Using Metal Oxide Sorbents. Energy & Fuels, 2004, 18, 1238-1242.	2.5	29

#	Article	IF	CITATIONS
37	Mercury and selenium retention in fly ashes: Influence of unburned particle content. Fuel, 2007, 86, 2064-2070.	3.4	28
38	Effect of adding aluminum salts to wet FGD systems upon the stabilization of mercury. Fuel, 2012, 96, 568-571.	3.4	28
39	Oxidised mercury determination from combustion gases using an ionic exchanger. Fuel, 2014, 122, 218-222.	3.4	27
40	Influence of iron species present in fly ashes on mercury retention and oxidation. Fuel, 2011, 90, 2808-2811.	3.4	24
41	Noble metal-based sorbents: A way to avoid new waste after mercury removal. Journal of Hazardous Materials, 2020, 400, 123168.	6.5	22
42	Impact of a semi-industrial coke processing plant in the surrounding surface soil. Part II: PAH content. Fuel Processing Technology, 2012, 104, 245-252.	3.7	21
43	Distribution of Trace Elements from a Coal Burned in Two Different Spanish Power Stations. Industrial & Engineering Chemistry Research, 2011, 50, 12208-12216.	1.8	20
44	Carbon materials loaded with maghemite as regenerable sorbents for gaseous Hg0 removal. Chemical Engineering Journal, 2020, 387, 124151.	6.6	20
45	Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes. Energy, 2018, 159, 648-655.	4.5	19
46	Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel, 2006, 85, 1389-1395.	3.4	18
47	The application of regenerable sorbents for mercury capture in gas phase. Environmental Science and Pollution Research, 2016, 23, 24495-24503.	2.7	18
48	A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents. Energies, 2017, 10, 1311.	1.6	18
49	Study of Mercury Adsorption by Low-Cost Sorbents Using Kinetic Modeling. Industrial & Engineering Chemistry Research, 2015, 54, 5572-5579.	1.8	17
50	Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: Effect of water. Chemosphere, 2015, 125, 191-197.	4.2	17
51	Determination of selenium by ICP-MS and HG-ICP-MS in coal, fly ashes and sorbents used for flue gas cleaning. Fuel, 2004, 83, 231-235.	3.4	16
52	A candidate material for mercury control in energy production processes: Carbon foams loaded with gold. Energy, 2018, 159, 630-637.	4.5	16
53	The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere. Journal of Hazardous Materials, 2010, 173, 450-454.	6.5	14
54	Speciation of Hg retained in gasification biomass chars by temperature-programmed decomposition. Fuel Processing Technology, 2014, 126, 1-4.	3.7	13

#	Article	IF	CITATIONS
55	Enrichment of thallium in fly ashes in a Spanish circulating fluidized-bed combustion plant. Fuel, 2015, 146, 51-55.	3.4	13
56	Effectiveness of amino-functionalized sorbents for co2 capture in the presence of Hg. Fuel, 2020, 267, 117250.	3.4	13
57	Impact of Oxy-Fuel Conditions on Elemental Mercury Re-Emission in Wet Flue Gas Desulfurization Systems. Environmental Science & amp; Technology, 2016, 50, 7247-7253.	4.6	12
58	Impact of a semi-industrial coke processing plant in the surrounding surface soil. Fuel Processing Technology, 2012, 102, 35-45.	3.7	11
59	Assessment of mercury pollution sources in beach sand and coastal soil by speciation analysis. Environmental Sciences Europe, 2019, 31, .	2.6	11
60	Lead isotope ratios in a soil from a coal carbonization plant. Fuel, 2007, 86, 1079-1085.	3.4	10
61	Geochemical speciation of mercury in bauxite. Applied Geochemistry, 2018, 93, 30-35.	1.4	9
62	Avoiding Mercury Emissions by Combustion in a Spanish Circulating Fluidized-Bed Combustion (CFBC) Plant. Energy & Fuels, 2011, 25, 3002-3008.	2.5	8
63	Mercury adsorption in the gas phase by regenerable Au-loaded activated carbon foams: a kinetic and reaction mechanism study. New Journal of Chemistry, 2020, 44, 12009-12018.	1.4	8
64	Study of boron behaviour in two spanish coal combustion power plants. Journal of Environmental Management, 2011, 92, 2586-2589.	3.8	7
65	Effect of Hg on CO2 capture by solid sorbents in the presence of acid gases. Chemical Engineering Journal, 2017, 312, 367-374.	6.6	7
66	Leaching of major and trace elements from paper–plastic gasification chars: An experimental and modelling study. Journal of Hazardous Materials, 2013, 244-245, 70-76.	6.5	4
67	Identification of mercury species in minerals with different matrices and impurities by thermal desorption technique. Environmental Science and Pollution Research, 2019, 26, 10867-10874.	2.7	4
68	Evaluation of the Variables that Influence Mercury Capture in Solid Sorbents. Coal Combustion and Gasification Products, 2009, 1, 32-37.	1.0	4
69	Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. Chemosphere, 2022, 301, 134645.	4.2	4
70	Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants. Journal of Environmental Monitoring, 2008, 10, 778.	2.1	2
71	Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers. Pure and Applied Chemistry, 2014, 86, 1861-1869.	0.9	2
72	Immobilization of mercury in contaminated soils through the use of new carbon foam amendments. Environmental Sciences Europe, 2021, 33, .	2.6	2

#	Article	IF	CITATIONS
73	Comparison of Mercury Retention by Fly Ashes Using Different Experimental Devices. Industrial & Engineering Chemistry Research, 2009, 48, 10702-10707.	1.8	1
74	A Candidate Material for Mercury Control in Energy Production Processes: Carbon Foams Loaded with Gold. , 0, , .		0
75	Carbon-Based Sorbents Impregnated with Iron Oxides for Removing Mercury in Energy Generation Processes. , 0, , .		0