
Yoshito Y Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unidirectional emission of phase-controlled second harmonic generation from a plasmonic nanoantenna. Nanophotonics, 2021, 10, 4601-4609.	6.0	6
2	Giant chiroptical response of twisted metal nanorods due to strong plasmon coupling. APL Photonics, 2021, 6, 126104.	5.7	4
3	Continuity equation for spin angular momentum in relation to optical chirality. Physical Review A, 2020, 102, .	2.5	7
4	Plasmonic linear nanomotor using lateral optical forces. Science Advances, 2020, 6, .	10.3	41
5	Enhanced Surface Plasmon Resonance Wavelength Shifts by Molecular Electronic Absorption in Far- and Deep-Ultraviolet Regions. Scientific Reports, 2020, 10, 9938.	3.3	14
6	Interactions Between Epitaxial Graphene Grown on the Si- and C-Faces of 4H-SiC Investigated Using Raman Imaging and Tip-Enhanced Raman Scattering. Applied Spectroscopy, 2020, 74, 1384-1390.	2.2	4
7	Plasmon-hybridization-induced optical torque between twisted metal nanorods. Optics Express, 2020, 28, 2398.	3.4	6
8	High noise margin decoding of holographic data page based on compressed sensing. Optics Express, 2020, 28, 7139.	3.4	14
9	Plasmon-induced transverse optical torque on nanostructures. , 2020, , .		0
10	Plasmonic nanomotors with directional control of scattered light. , 2020, , .		0
11	Theoretical Study of a Surface Collinear Holographic Memory. Photonics, 2019, 6, 70.	2.0	2
12	Transverse optical torque induced by localized surface plasmons. Physical Review A, 2019, 100, .	2.5	4
13	Soft trapping lasts longer: Dwell time of a Brownian particle varied by potential shape. Physical Review E, 2019, 99, 022119.	2.1	2
14	Far―and Deepâ€Ultraviolet Surface Plasmon Resonance Sensor. Chemical Record, 2019, 19, 1210-1219.	5.8	4
15	Effect of force field shape on the Brownian particle trapping duration of optical tweezer. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2019, 2019.10, 19pm5PN304.	0.0	0
16	Launching and Control of Graphene Plasmons by Nanoridge Structures. ACS Photonics, 2018, 5, 1050-1057.	6.6	8
17	Plasmonic–Diffractive Hybrid Sensors Based on a Gold Nanoprism Array. ACS Applied Nano Materials, 2018, 1, 5994-5999.	5.0	12

18 Extraordinary optical transverse torque induced by localized surface plasmon. , 2018, , .

0

Υοςηιτό Υ Τανακά

#	Article	IF	CITATIONS
19	Graphene nanoridges as a directional plasmon launcher. , 2018, , .		Ο
20	Analysis of blinking from multicoloured SERSâ€active Ag colloidal nanoaggregates with poly‣â€lysine via truncated power law. Journal of Raman Spectroscopy, 2017, 48, 570-577.	2.5	9
21	Unidirectional control of optically induced spin waves. Europhysics Letters, 2017, 117, 67001.	2.0	23
22	Tridirectional Polarization Routing of Light by a Single Triangular Plasmonic Nanoparticle. Nano Letters, 2017, 17, 3165-3170.	9.1	40
23	Aluminum Film Thickness Dependence of Surface Plasmon Resonance in the Far- and Deep-ultraviolet Regions. Chemistry Letters, 2017, 46, 1560-1563.	1.3	16
24	Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Scientific Reports, 2017, 7, 5934.	3.3	38
25	Fast non-interferometric iterative phase retrieval for holographic data storage. Optics Express, 2017, 25, 30905.	3.4	30
26	Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices. Optics Express, 2016, 24, 21886.	3.4	28
27	3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles. Angewandte Chemie, 2016, 128, 8531-8535.	2.0	8
28	3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles. Angewandte Chemie - International Edition, 2016, 55, 8391-8395.	13.8	44
29	Tip-enhanced Raman spectroscopy of nanostructures on epitaxial graphene and graphene microisland. , 2016, , .		Ο
30	Side-illuminated tip-enhanced Raman study of edge phonon in graphene at the electrical breakdown limit. Applied Physics Letters, 2016, 108, .	3.3	7
31	Tip-Enhanced Raman Scattering of Local Nanostructure on Large Sheet and Microisland Epitaxial Graphene Grown on 4H–SiC (0001). ACS Symposium Series, 2016, , 227-245.	0.5	Ο
32	3D SERS imaging based on chemically-synthesized highly-symmetric nanoporous silver microparticles. , 2016, , .		0
33	Development of far- and deep-ultraviolet surface plasmon resonance (SPR) sensor using aluminum thin film. Proceedings of SPIE, 2016, , .	0.8	2
34	Characterization of SiC-grown epitaxial graphene microislands using tip-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 28993-28999.	2.8	14
35	Two-photon excited fluorescence from a pseudoisocyanine-attached gold tip via a plasmonic-photonic hybrid system. Optics Express, 2015, 23, 21730.	3.4	2
36	Nanoscale Color Sorting of Surface Plasmons in a Double-Nanogap Structure with Multipolar Plasmon Excitation. Nano Letters, 2015, 15, 7086-7090.	9.1	21

Υοςηιτό Υ Τανακά

#	Article	IF	CITATIONS
37	Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A SERS Study. Angewandte Chemie - International Edition, 2014, 53, 13866-13870.	13.8	83
38	Tip-Enhanced Raman Scattering of the Local Nanostructure of Epitaxial Graphene Grown on 4H-SiC (0001ì). Journal of Physical Chemistry C, 2014, 118, 25809-25815.	3.1	42
39	Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity. Physical Review A, 2014, 89, .	2.5	10
40	Near-field optical response of periodically arrayed plasmonic nanogap antennas. Journal of Applied Physics, 2013, 114, 024306.	2.5	3
41	Direct imaging of localized fields in a gold nanostructure using a scattering-type near-field microscope. , 2013, , .		0
42	Nanostructured Potential of Optical Trapping Using a Plasmonic Nanoblock Pair. Nano Letters, 2013, 13, 2146-2150.	9.1	104
43	Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation. Optics Express, 2013, 21, 27759.	3.4	7
44	Nonlinear phenomena from a PIC-attached gold tip using a plasmonic-whispering gallery mode hybrid system. Proceedings of SPIE, 2013, , .	0.8	1
45	Nanoscale interference patterns of gap-mode multipolar plasmonic fields. Scientific Reports, 2012, 2, 764.	3.3	40
46	Patterning: Nanopattern Fabrication of Gold on Hydrogels and Application to Tunable Photonic Crystal (Adv. Mater. 38/2012). Advanced Materials, 2012, 24, 5242-5242.	21.0	0
47	Efficient optical trapping using small arrays of plasmonic nanoblock pairs. Applied Physics Letters, 2012, 100, 021102.	3.3	19
48	Nanopattern Fabrication of Gold on Hydrogels and Application to Tunable Photonic Crystal. Advanced Materials, 2012, 24, 5243-5248.	21.0	28
49	Confinement of Photopolymerization and Solidification with Radiation Pressure. Journal of the American Chemical Society, 2011, 133, 14472-14475.	13.7	37
50	Observation of Autler-Townes splitting in six-wave mixing. Optics Express, 2011, 19, 7726.	3.4	39
51	Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs. Optics Express, 2011, 19, 17462.	3.4	38
52	Selection and transfer of individual plasmon-resonant metal nanoparticles. Applied Physics Letters, 2010, 96, 053117.	3.3	2
53	Direct Observation of Localized Fields in Nanogaps between Metal Particles Using a Scattering-Type Near-Field Microscope. Applied Physics Express, 2009, 2, 102002.	2.4	4
54	Laser-induced self-assembly of silver nanoparticles via plasmonic interactions. Optics Express, 2009, 17, 18760.	3.4	49

ΥΟSΗΙΤΟ Υ ΤΑΝΑΚΑ

#	Article	IF	CITATIONS
55	Surface Enhanced Raman Scattering from Pseudoisocyanine on Ag Nanoaggregates Produced by Optical Trapping with a Linearly Polarized Laser Beam. Journal of Physical Chemistry C, 2009, 113, 11856-11860.	3.1	37
56	Laser microfixation of highly ordered J aggregates on a glass substrate. Applied Physics Letters, 2007, 91, 041102.	3.3	15
57	Laser-Induced Self-Assembly of Pseudoisocyanine J-Aggregates. Journal of Physical Chemistry C, 2007, 111, 18457-18460.	3.1	13
58	Effect of salts on the electrical conductance of a fluorine-containing poly(carboxylic acid), PPFNA. Colloids and Surfaces B: Biointerfaces, 2007, 56, 277-280.	5.0	2
59	Two-Photon Fluorescence Spectroscopy of Individually Trapped Pseudoisocyanine J-Aggregates in Aqueous Solution. Journal of Physical Chemistry B, 2006, 110, 17906-17911.	2.6	42
60	Thiacarbocyanine dye J-aggregation in optical trapping potential. , 2006, , .		1
61	Polyelectrolytic Behavior of a Novel Fluorine-Containing Ionomer, PPFNAâ€. Journal of Physical Chemistry B. 2003, 107, 8146-8151.	2.6	2