K Swaminathan Iyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2073950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chain Formation of PNIPAM-Coated Magnetic Nanoparticles in an External Magnetic Field and the Effect of Temperature. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	Ο
2	A dendronised polymer architecture breaks the conventional inverse relationship between porosity and mechanical properties of hydrogels. Chemical Communications, 2021, 57, 773-776.	2.2	7
3	A peptide-functionalised dendronised polymer for selective transfection in human liver cancer cells. New Journal of Chemistry, 2021, 45, 19315-19320.	1.4	1
4	Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture. Journal of the American Chemical Society, 2021, 143, 4758-4765.	6.6	34
5	SP94-Targeted Nanoparticles Enhance the Efficacy of Sorafenib and Improve Liver Cancer Cell Discrimination. ACS Applied Bio Materials, 2021, 4, 1023-1029.	2.3	5
6	DNA G-Quadruplex and i-Motif Structure Formation Is Interdependent in Human Cells. Journal of the American Chemical Society, 2020, 142, 20600-20604.	6.6	74
7	Surface Diffusion of Dendronized Polymers Correlates with Their Transfection Potential. Langmuir, 2020, 36, 9074-9080.	1.6	9
8	Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. Npj Precision Oncology, 2020, 4, 24.	2.3	86
9	Synthetic copolymer conjugates of docetaxel and in vitro assessment of anticancer efficacy. New Journal of Chemistry, 2020, 44, 20013-20020.	1.4	3
10	Protein corona formation moderates the release kinetics of ion channel antagonists from transferrin-functionalized polymeric nanoparticles. RSC Advances, 2020, 10, 2856-2869.	1.7	11
11	Convergence of terahertz radiation and nanotechnology. Journal of Materials Chemistry C, 2020, 8, 10942-10955.	2.7	13
12	A dendronized polymer variant that facilitates safe delivery of a calcium channel antagonist to the heart. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102264.	1.7	1
13	High resolution crystal structure of a KRAS promoter G-quadruplex reveals a dimer with extensive poly-A ï€-stacking interactions for small-molecule recognition. Nucleic Acids Research, 2020, 48, 5766-5776.	6.5	34
14	Dendronised Polymers as Templates for In Situ Quantum Dot Synthesis. Australian Journal of Chemistry, 2020, 73, 658.	0.5	0
15	Novel Hydrophilic Copolymer-Based Nanoparticle Enhances the Therapeutic Efficiency of Doxorubicin in Cultured MCF-7 Cells. ACS Omega, 2019, 4, 17083-17089.	1.6	14
16	A facile methodology using quantum dot multiplex labels for tracking co-transfection. RSC Advances, 2019, 9, 20053-20057.	1.7	2
17	Tumour suppression by targeted intravenous non-viral CRISPRa using dendritic polymers. Chemical Science, 2019, 10, 7718-7727.	3.7	37
18	Elucidating the Inability of Functionalized Nanoparticles to Cross the Blood–Brain Barrier and Target Specific Cells in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 22085-22095.	4.0	18

K SWAMINATHAN IYER

#	Article	IF	CITATIONS
19	Macromolecular approach for targeted radioimmunotherapy in non-Hodgkin's lymphoma. Chemical Communications, 2019, 55, 14506-14509.	2.2	2
20	Systematic assessment of surface functionality on nanoscale patterns for topographic contact guidance of cells. New Journal of Chemistry, 2018, 42, 7237-7240.	1.4	17
21	Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Advances, 2018, 8, 9661-9669.	1.7	64
22	Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy. Langmuir, 2018, 34, 15343-15349.	1.6	120
23	Multicarbazole scaffolds for selective G-quadruplex binding. Chemical Communications, 2018, 54, 9647-9650.	2.2	13
24	Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma. Journal of Neuroinflammation, 2018, 15, 201.	3.1	27
25	Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical Science, 2017, 8, 2923-2930.	3.7	101
26	Polymeric Nanofibre Scaffold for the Delivery of a Transforming Growth Factor β1 Inhibitor. Australian Journal of Chemistry, 2017, 70, 280.	0.5	11
27	Magnetically recoverable Fe ₃ O ₄ @Au-coated nanoscale catalysts for the A ³ -coupling reaction. Dalton Transactions, 2017, 46, 5133-5137.	1.6	40
28	The Protein Corona of PEGylated PGMA-Based Nanoparticles is Preferentially Enriched with Specific Serum Proteins of Varied Biological Function. Langmuir, 2017, 33, 12926-12933.	1.6	16
29	Direct correlation of PNIPAM thermal transition and magnetic resonance relaxation of iron oxide nanoparticles. Materials Chemistry Frontiers, 2017, 1, 2335-2340.	3.2	23
30	An Unexpected Transient Breakdown of the Blood Brain Barrier Triggers Passage of Large Intravenously Administered Nanoparticles. Scientific Reports, 2016, 6, 22595.	1.6	34
31	Colloidal Polymeric Platform for Facile Click-Assisted Ligand Functionalization and Receptor Targeting. ACS Omega, 2016, 1, 1114-1120.	1.6	4
32	Poly(glycidyl methacrylate) coated dual mode upconverting nanoparticles for neuronal cell imaging. New Journal of Chemistry, 2016, 40, 6692-6696.	1.4	4
33	Sensitizing basal-like breast cancer to chemotherapy using nanoparticles conjugated with interference peptide. Nanoscale, 2016, 8, 9343-9353.	2.8	23
34	Magnetically Directed Assembly of Nanocrystals for Catalytic Control of a Three-Component Coupling Reaction. Crystal Growth and Design, 2016, 16, 4773-4776.	1.4	29
35	Functional Reactive Polymer Electrospun Matrix. ACS Applied Materials & Interfaces, 2016, 8, 4934-4939.	4.0	24
36	The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart. Nanomedicine, 2016, 11, 817-832.	1.7	21

K SWAMINATHAN IYER

#	Article	IF	CITATIONS
37	Characterization of polymeric nanoparticles for treatment of partial injury to the central nervous system. Data in Brief, 2016, 7, 152-156.	0.5	1
38	Regulation of collagen expression using nanoparticle mediated inhibition of TGF-β activation. New Journal of Chemistry, 2016, 40, 1091-1095.	1.4	3
39	Enabling dual cellular destinations of polymeric nanoparticles for treatment following partial injury to the central nervous system. Biomaterials, 2016, 74, 200-216.	5.7	25
40	Hierarchical Patterning of Multifunctional Conducting Polymer Nanoparticles as a Bionic Platform for Topographic Contact Guidance. ACS Nano, 2015, 9, 1767-1774.	7.3	32
41	RNA Interference Using <i>c-Myc</i> –Conjugated Nanoparticles Suppresses Breast and Colorectal Cancer Models. Molecular Cancer Therapeutics, 2015, 14, 1259-1269.	1.9	26
42	Prolonged glutamate excitotoxicity increases GluR1 immunoreactivity but decreases mRNA of GluR1 and associated regulatory proteins inÂdissociated rat retinae inÂvitro. Biochimie, 2015, 112, 160-171.	1.3	10
43	PRGD/PDLLA conduit potentiates rat sciatic nerve regeneration and the underlying molecular mechanism. Biomaterials, 2015, 55, 44-53.	5.7	24
44	The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Research, 2015, 43, 3826-3840.	6.5	115
45	Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine, 2015, 10, 2229-2247.	1.7	85
46	Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. Journal of Cell Biology, 2015, 210, 529-539.	2.3	269
47	Capillary force lithography: the versatility of this facile approach in developing nanoscale applications. Nanoscale, 2015, 7, 401-414.	2.8	43
48	Superparamagnetic imposed diatom frustules for the effective removal of phosphates. Green Chemistry, 2014, 16, 82-85.	4.6	12
49	Evaluating the effects of nacre on human skin and scar cells in culture. Toxicology Research, 2014, 3, 223-227.	0.9	10
50	Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Scientific Reports, 2014, 4, 6903.	1.6	65
51	Continuous flow tuning of ordered mesoporous silica under ambient conditions. RSC Advances, 2013, 3, 18767.	1.7	32
52	Palladium nano-carbon-calixarene based devices for hydrogen sensing. New Journal of Chemistry, 2013, 37, 3289.	1.4	13
53	An improved assay for the spectrophotometric determination of chondroitinase ABC activity. New Journal of Chemistry, 2013, 37, 1944.	1.4	3
54	Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Advances, 2013, 3, 1009-1012.	1.7	60

K SWAMINATHAN IYER

#	Article	IF	CITATIONS
55	Examining Efficacy of "TAT-less―Delivery of a Peptide against the L-Type Calcium Channel in Cardiac Ischemia–Reperfusion Injury. ACS Nano, 2013, 7, 2212-2220.	7.3	28
56	Suppressing regrowth of microfluidic generated drugnanocrystals using polyelectrolyte coatings. RSC Advances, 2013, 3, 695-698.	1.7	16
57	In situ coating of diatom frustules with silver nanoparticles. Green Chemistry, 2013, 15, 2060.	4.6	16
58	Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Advances, 2013, 3, 3213.	1.7	44
59	Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chemistry, 2012, 14, 2682.	4.6	114
60	Nanoparticle-mediated internalisation and release of a calcium channel blocker. RSC Advances, 2012, 2, 8587.	1.7	9
61	Sodium ion association via bridging water molecules for different charged p-phosphonated calix[4]arene bilayers. CrystEngComm, 2012, 14, 8541.	1.3	3
62	Regiospecific linear assembly of Pd nanocubes for hydrogen gas sensing. Chemical Communications, 2012, 48, 1033-1035.	2.2	20
63	Controlling anatase coating of diatom frustules by varying the binding layer. CrystEngComm, 2012, 14, 3446.	1.3	13
64	Multimodal Analysis of PEI-Mediated Endocytosis of Nanoparticles in Neural Cells. ACS Nano, 2011, 5, 8640-8648.	7.3	83
65	Reversible submergence of nanoparticles into ultrathin block copolymer films. Soft Matter, 2011, 7, 2538.	1.2	15
66	Macromolecular anchoring layers for polymer grafting: comparative study. Polymer, 2006, 47, 272-279.	1.8	91
67	Block Copolymer Nanocomposite Films Containing Silver Nanoparticles. ACS Symposium Series, 2006, , 149-166.	0.5	2
68	Effect of Macromolecular Anchoring Layer Thickness and Molecular Weight on Polymer Grafting. Macromolecules, 2004, 37, 9538-9545.	2.2	86
69	Polystyrene Layers Grafted to Macromolecular Anchoring Layer. Macromolecules, 2003, 36, 6519-6526.	2.2	134
70	Surface Morphology of Mechanically Heterogeneous Ultrathin Polymer Films. Langmuir, 2003, 19, 118-124.	1.6	16