Jody Clarke-Midura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kindergarten students' mathematics knowledge at work: the mathematics for programming robot toys. Mathematical Thinking and Learning, 2023, 25, 380-408.	1.2	13
2	Tabletop games designed to promote computational thinking. Computer Science Education, 2022, 32, 449-475.	3.7	3
3	Exploring Measurement through Coding: Children's Conceptions of a Dynamic Linear Unit with Robot Coding Toys. Education Sciences, 2022, 12, 143.	2.6	4
4	Children caring for robots: Expanding computational thinking frameworks to include a technological ethic of care. International Journal of Child-Computer Interaction, 2022, 33, 100491.	3.5	15
5	Recruiting K-12 youth into computer science. ACM Inroads, 2022, 13, 22-29.	0.6	3
6	Developing a kindergarten computational thinking assessment using evidence-centered design: the case of algorithmic thinking. Computer Science Education, 2021, 31, 117-140.	3.7	27
7	Integrating formative assessment and feedback into scientific theory-building practices and instruction. Assessment in Education, 2021, 28, 118-134.	1.2	1
8	How young children engage in and shift between reference frames when playing with coding toys. International Journal of Child-Computer Interaction, 2021, 28, 100250.	3.5	10
9	An Emerging Technology Report on Computational Toys in Early Childhood. Technology, Knowledge and Learning, 2020, 25, 213-224.	4.9	32
10	A Systematic Review of Digital Games in Second Language Learning Studies. International Journal of Game-Based Learning, 2020, 10, 1-15.	1.4	21
11	Introducing Coding through Tabletop Board Games and Their Digital Instantiations across Elementary Classrooms and School Libraries. , 2020, , .		8
12	Making Apps. ACM Transactions on Computing Education, 2020, 20, 1-23.	3.5	11
13	Using Informed Design in Informal Computer Science Programs to Increase Youths' Interest, Self-efficacy, and Perceptions of Parental Support. ACM Transactions on Computing Education, 2019, 19, 1-24.	3.5	14
14	The building blocks of coding: a comparison of early childhood coding toys. Information and Learning Science, 2019, 120, 505-518.	1.3	20
15	Exploring the pedagogical affordances of a collaborative board game in a dual language immersion classroom. Foreign Language Annals, 2019, 52, 753-775.	1.0	14
16	How design features in digital math games support learning and mathematics connections. Computers in Human Behavior, 2019, 91, 316-332.	8.5	41
17	Coding Toys in Kindergarten. Teaching Children Mathematics, 2019, 25, 314-317.	0.2	5
18	Iterative design of a simulation-based module for teaching evolution by natural selection. Evolution: Education and Outreach, 2018, 11, .	0.8	6

JODY CLARKE-MIDURA

#	Article	IF	CITATIONS
19	Drawing a computer scientist: stereotypical representations or lack of awareness?. Computer Science Education, 2018, 28, 232-254.	3.7	19
20	The many faces of scientific inquiry: Effectively measuring what students do and not only what they say. Journal of Research in Science Teaching, 2018, 55, 1469-1496.	3.3	17
21	How Near Peer Mentoring Affects Middle School Mentees. , 2018, , .		30
22	Note-taking and science inquiry in an open-ended learning environment. Contemporary Educational Psychology, 2018, 55, 12-29.	2.9	14
23	How Mother and Father Support Affect Youths' Interest in Computer Science. , 2018, , .		8
24	How Immersive Virtual Environments Foster Self-Regulated Learning. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 28-54.	0.2	5
25	Developing a Personalized, Educational Gaming Experience for Young Chinese DLI Learners. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 253-274.	0.2	Ο
26	PLAYING MENTOR: A NEW STRATEGY FOR RECRUITING YOUNG WOMEN INTO COMPUTER SCIENCE. Journal of Women and Minorities in Science and Engineering, 2017, 23, 193-210.	0.8	3
27	Testing the effectiveness of two natural selection simulations in the context of a large-enrollment undergraduate laboratory class. Evolution: Education and Outreach, 2017, 10, .	0.8	8
28	Tipping the Scales: Classroom Feasibility of the Radix Endeavor Game. , 2017, , 225-258.		0
29	Towards general models of effective science inquiry in virtual performance assessments. Journal of Computer Assisted Learning, 2016, 32, 267-280.	5.1	39
30	Design and Implementation of an MMO. Advances in Game-based Learning Book Series, 2016, , 33-54.	0.2	4
31	A Framework for Structuring Learning Assessment in a Massively Multiplayer Online Educational Game. International Journal of Game-Based Learning, 2014, 4, 37-59.	1.4	17
32	Predicting Successful Inquiry Learning in a Virtual Performance Assessment for Science. Lecture Notes in Computer Science, 2013, , 203-214.	1.3	15
33	Assessing Science Inquiry. Advances in Educational Technologies and Instructional Design Book Series, 2012, , 138-164.	0.2	4
34	A multiâ€user virtual environment for building and assessing higher order inquiry skills in science. British Journal of Educational Technology, 2010, 41, 56-68.	6.3	156
35	Assessment, Technology, and Change. Journal of Research on Technology in Education, 2010, 42, 309-328.	6.5	121
36	Design for Scalability: A Case Study of the River City Curriculum. Journal of Science Education and Technology, 2009, 18, 353-365.	3.9	101