List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207372/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 2016, 7, 10842.	5.8	270
2	A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014, 10, 745-752.	3.9	108
3	Design Strategies for Bivalent Ligands Targeting GPCRs. ChemMedChem, 2011, 6, 963-974.	1.6	92
4	Biased Agonism at G Proteinâ€Coupled Receptors: The Promise and the Challenges—A Medicinal Chemistry Perspective. Medicinal Research Reviews, 2014, 34, 1286-1330.	5.0	92
5	Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2010, 50, 626-637.	2.5	91
6	A Structure–Activity Analysis of Biased Agonism at the Dopamine D2 Receptor. Journal of Medicinal Chemistry, 2013, 56, 9199-9221.	2.9	80
7	Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. Journal of Medicinal Chemistry, 2015, 58, 5699-5727.	2.9	74
8	Structure–Activity Relationships of Privileged Structures Lead to the Discovery of Novel Biased Ligands at the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2014, 57, 4924-4939.	2.9	67
9	Synthesis and Pharmacological Profiling of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) as Allosteric Modulators of the M ₁ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 5151-5172.	2.9	53
10	Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D ₂ Receptor Through Fragmentation of a Bitopic Ligand. Journal of Medicinal Chemistry, 2015, 58, 6819-6843.	2.9	47
11	Synthesis and Biological Evaluation of <i>N</i> ubstituted Noscapine Analogues. ChemMedChem, 2012, 7, 2122-2133.	1.6	46
12	Synthesis and Pharmacological Evaluation of Dual Acting Ligands Targeting the Adenosine A _{2A} and Dopamine D ₂ Receptors for the Potential Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2015, 58, 718-738.	2.9	44
13	Structure–Activity Study of <i>N</i> -((<i>trans</i>)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i>)-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole-2 (SB269652), a Bitopic Ligand That Acts as a Negative Allosteric Modulator of the Dopamine D ₂ Recentor. Journal of Medicinal Chemistry, 2015, 58, 5287-5307.	-carboxan 2.9	nide 40
14	Homobivalent Ligands of the Atypical Antipsychotic Clozapine: Design, Synthesis, and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2012, 55, 1622-1634.	2.9	39
15	4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the M ₁ Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2016, 59, 388-409.	2.9	35
16	The Dopamine D ₂ and Adenosine A _{2A} Receptors: Past, Present and Future Trends for the Treatment of Parkinson's Disease. Current Medicinal Chemistry, 2014, 21, 3188-3210.	1.2	30
17	The Synthesis and Biological Evaluation of Multifunctionalised Derivatives of Noscapine as Cytotoxic Agents. ChemMedChem, 2014, 9, 399-410.	1.6	28
18	The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics. Journal of Molecular Modeling, 2016, 22, 203.	0.8	28

#	Article	IF	CITATIONS
19	Synthesis and Pharmacological Evaluation of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) Designed to Bind Irreversibly to an Allosteric Site of the M1Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2014, 57, 5405-5418.	2.9	27
20	Novel adenosine A2A receptor ligands: A synthetic, functional and computational investigation of selected literature adenosine A2A receptor antagonists for extending into extracellular space. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3427-3433.	1.0	26
21	The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.	2.0	26
22	The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells. British Journal of Haematology, 2017, 177, 423-440.	1.2	24
23	Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands. MedChemComm, 2014, 5, 891-898.	3.5	23
24	Characterization of the N-Methyltransferase Activities of the Multifunctional Polypeptide Cyclosporin Synthetase. Chemistry and Biology, 2011, 18, 464-475.	6.2	21
25	Synthesis and Preliminary Pharmacological Evaluation of 4′-Arylalkyl Analogues of Clozapine. II. Effect of the Nature and Length of the Linker. Australian Journal of Chemistry, 2003, 56, 875.	0.5	20
26	Probing Structural Requirements of Positive Allosteric Modulators of the M ₄ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 8196-8200.	2.9	20
27	Synthesis and Pharmacological Evaluation of Noscapine-Inspired 5-Substituted Tetrahydroisoquinolines as Cytotoxic Agents. Journal of Medicinal Chemistry, 2018, 61, 8444-8456.	2.9	20
28	A Thieno[2,3- <i>d</i>]pyrimidine Scaffold Is a Novel Negative Allosteric Modulator of the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2019, 62, 174-206.	2.9	20
29	Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole. ACS Chemical Biology, 2019, 14, 1780-1792.	1.6	19
30	The Application of the Schmidt Reaction and Beckmann Rearrangement to the Synthesis of Bicyclic Lactams: Some Mechanistic Considerations. Australian Journal of Chemistry, 2010, 63, 211.	0.5	18
31	Overcoming P-Clycoprotein–Mediated Drug Resistance with Noscapine Derivatives. Drug Metabolism and Disposition, 2019, 47, 164-172.	1.7	18
32	Conformational Analysis of Drug Molecules: A Practical Exercise in the Medicinal Chemistry Course. Journal of Chemical Education, 2009, 86, 477.	1.1	17
33	Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator <i>N</i> ((<i>trans</i>)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i>)-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole (SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D ₂ Recentor, Journal of Medicinal Chemistry, 2019, 62, 371-377.	2-2-carboxa	nmide
34	2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine methanol solvate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1367-o1369.	0.2	16
35	Synthesis and Pharmacological Evaluation of M ₄ Muscarinic Receptor Positive Allosteric Modulators Derived from VU10004. ACS Chemical Neuroscience, 2015, 6, 838-844.	1.7	16
36	The action of a negative allosteric modulator at the dopamine D2 receptor is dependent upon sodium ions. Scientific Reports, 2018, 8, 1208.	1.6	16

#	Article	IF	CITATIONS
37	Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical Libraries (REFiL _X). Journal of Medicinal Chemistry, 2020, 63, 6863-6875.	2.9	16
38	The design, synthesis and biological evaluation of novel URB602 analogues as potential monoacylglycerol lipase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6782-6787.	1.0	15
39	Proof of Concept Study for Designed Multiple Ligands Targeting the Dopamine D ₂ , Serotonin 5-HT _{2A} , and Muscarinic M ₁ Acetylcholine Receptors. Journal of Medicinal Chemistry, 2015, 58, 1550-1555.	2.9	14
40	Novel Fused Arylpyrimidinone Based Allosteric Modulators of the M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2016, 7, 647-661.	1.7	14
41	Synthesis and Pharmacological Evaluation of Heterocyclic Carboxamides: Positive Allosteric Modulators of the M ₁ Muscarinic Acetylcholine Receptor with Weak Agonist Activity and Diverse Modulatory Profiles. Journal of Medicinal Chemistry, 2018, 61, 2875-2894.	2.9	14
42	Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS Pharmacology and Translational Science, 2018, 1, 96-109.	2.5	13
43	Crossword puzzles for chemistry education: learning goals beyond vocabulary. Chemistry Education Research and Practice, 2016, 17, 532-554.	1.4	12
44	Structure–Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2019, 62, 9488-9520.	2.9	12
45	Negative allosteric modulators of the human calciumâ€sensing receptor bind to overlapping and distinct sites within the 7â€ŧransmembrane domain. British Journal of Pharmacology, 2020, 177, 1917-1930.	2.7	12
46	Synthesis and Preliminary Pharmacological Evaluation of 4′-Arylalkyl Analogues of Clozapine. IV. The Effects of Aromaticity and Isosteric Replacement. Australian Journal of Chemistry, 2008, 61, 930.	0.5	11
47	Synthesis, molecular structure, NMR spectroscopic and computational analysis of a selective adenosine A2A antagonist, ZM 241385. Structural Chemistry, 2013, 24, 1241-1251.	1.0	11
48	Hexaarylbiimidazoles(HABI)-functionalized lyotropic liquid crystalline systems as visible light-responsive materials. Journal of Colloid and Interface Science, 2020, 579, 379-390.	5.0	11
49	Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacology and Translational Science, 2021, 4, 666-679.	2.5	11
50	Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M ₁ Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2018, 94, 770-783.	1.0	10
51	Aminimides as Potential CNS Acting Agents. I. Design, Synthesis, and Receptor Binding of 4′-Aryl Aminimide Analogues of Clozapine as Prospective Novel Antipsychotics. Australian Journal of Chemistry, 2007, 60, 673.	0.5	9
52	Synthesis, functional and binding profile of (R)-apomorphine based homobivalent ligands targeting the dopamine D2 receptor. MedChemComm, 2013, 4, 1290.	3.5	9
53	Detection and Prevention of Aggregation-based False Positives in STD-NMR-based Fragment Screening. Australian Journal of Chemistry, 2013, 66, 1518.	0.5	9
54	Bacterial Fatty Acid Synthesis: Effect of Tween 80 on Antibiotic Potency Against Streptococcus Agalactiae and Methicillin-Resistant Staphylococcus Aureus. Anti-Infective Agents, 2014, 12, 80-84.	0.1	9

#	Article	IF	CITATIONS
55	Development of a Photoactivatable Allosteric Ligand for the M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2014, 5, 902-907.	1.7	9
56	The First Aminimide Synthesis from Benzoyl Azide and Pyridine. Australian Journal of Chemistry, 2007, 60, 214.	0.5	8
57	Multivalent approaches and beyond: novel tools for the investigation of dopamine D ₂ receptor pharmacology. Future Medicinal Chemistry, 2016, 8, 1349-1372.	1.1	8
58	Synthesis and SAR study of 4-arylpiperidines and 4-aryl-1,2,3,6-tetrahydropyridines as 5-HT2C agonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2560-2564.	1.0	7
59	A structure–activity relationship study of the positive allosteric modulator LY2033298 at the M ₄ muscarinic acetylcholine receptor. MedChemComm, 2015, 6, 1998-2003.	3.5	7
60	A Novel Class ofNâ€6ulfonyl andNâ€6ulfamoyl Noscapine Derivatives that Promote Mitotic Arrest in Cancer Cells. ChemMedChem, 2019, 14, 1968-1981.	1.6	7
61	6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M ₁ mAChR: The Determinants of Allosteric Activity. ACS Chemical Neuroscience, 2019, 10, 1099-1114.	1.7	7
62	NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei. Journal of Biomolecular NMR, 2020, 74, 595-611.	1.6	7
63	Aminimides as Potential CNS Acting Agents. II Design, Synthesis, and Receptor Binding of 4′-Arylalkyl Aminimide Analogues of Clozapine as Prospective Novel Antipsychotics. Australian Journal of Chemistry, 2008, 61, 5.	0.5	6
64	New hybrids of clozapine and haloperidol and their isosteric analogues: synthesis, X-ray crystallography, conformational analysis and preliminary pharmacological evaluation. Structural Chemistry, 2010, 21, 613-628.	1.0	6
65	Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor. European Journal of Medicinal Chemistry, 2019, 168, 474-490.	2.6	6
66	1,3â€Benzodioxoleâ€Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and Tubulinâ€Bound Structure. ChemMedChem, 2021, 16, 2882-2894.	1.6	6
67	Aminimides as Potential CNS-Acting Agents. III. Design, Synthesis, and Receptor Binding of Aminimide Analogues of Dopamine, Serotonin, Morphine, and Nicotine. Australian Journal of Chemistry, 2008, 61, 422.	0.5	5
68	Synthesis and Preliminary Pharmacological Evaluation of 4′-Arylalkyl Analogues of Clozapine. III. Replacement of the Tricyclic Nucleus with a Bicyclic Template. Australian Journal of Chemistry, 2007, 60, 928.	0.5	4
69	Development of Novel 4â€Arylpyridinâ€2â€one and 6â€Arylpyrimidinâ€4â€one Positive Allosteric Modulators of M 1 Muscarinic Acetylcholine Receptor. ChemMedChem, 2021, 16, 216-233.	the 1.6	4
70	Structural Features of Iperoxo–BQCA Muscarinic Acetylcholine Receptor Hybrid Ligands Determining Subtype Selectivity and Efficacy. ACS Chemical Neuroscience, 2022, 13, 97-111.	1.7	4
71	NMR case study of ropinirole: concentration-dependent effects of nonexchangeable proton resonances. Magnetic Resonance in Chemistry, 2014, 52, 715-718.	1.1	3
72	The Synthesis and Preliminary Pharmacological Evaluation of a Series of Substituted 4'-Phenoxypropyl Analogues of the Atypical Antipsychotic Clozapine. Australian Journal of Chemistry, 2010, 63, 116.	0.5	2

#	Article	IF	CITATIONS
73	Reply to â€~Antipsychotics with similar association kinetics at dopamine D2 receptors differ in extrapyramidal side-effects'. Nature Communications, 2018, 9, 3568.	5.8	2
74	Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1 Receptor. Molecules, 2021, 26, 3799.	1.7	2
75	8-Chloro-11-[4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazino]-5H-dibenzo[b,e][1,4]diazepine. Molecules, 1999, 4, 329-332.	1.7	1
76	4-Chloro-N-[4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)-1-methylpiperazinio]benzamidate dichloromethane solvate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o20-o22.	0.2	1
77	5,5′-(Piperazine-1,4-diyl)bis(8-chloropyrido[2,3-b][1,5]benzoxazepine). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5434-o5436.	0.2	1
78	Simplified platensimycin analogues as antibacterial agents. MedChemComm, 2012, 3, 244-249.	3.5	1
79	Development of AC265347â€Inspired Calciumâ€Sensing Receptor Agoâ€Positive Allosteric Modulators. ChemMedChem, 2021, 16, 3451-3462.	1.6	1
80	Di-tert-butylN-[2,6-bis(methoxymethoxy)phenyl]iminodiacetate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o819-o819.	0.2	1
81	Personalised medicines for familial hypercalcemia and hyperparathyroidism. Journal of Molecular Endocrinology, 2022, , .	1.1	1
82	Synthesis of 8-chloro-11-(4-(3-(p-tolyloxy)propyl)piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine. MolBank, 2005, 2005, M454.	0.2	0
83	8-Chloro-5-(4-phenethylpiperazin-1-yl)pyrido[2,3-b][1,5]benzoxazepine. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1865-o1866.	0.2	0
84	2,2,7-Trichloro-3,4-dihydronaphthalen-1(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2254-o2254.	0.2	0