Xi-Ming Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2073582/publications.pdf

Version: 2024-02-01

59	2,824	33 h-index	53
papers	citations		g-index
60	60	60	3540 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	CD74 in Apoptotic Macrophages Is Associated with Inflammation, Plaque Progression and Clinical Manifestations in Human Atherosclerotic Lesions. Metabolites, 2022, 12, 54.	2.9	8
2	Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biology, 2022, 114, 108-137.	3.6	6
3	Protease-Activated Receptor 1 in Human Carotid Atheroma Is Significantly Related to Iron Metabolism, Plaque Vulnerability, and the Patient's Age. International Journal of Molecular Sciences, 2022, 23, 6363.	4.1	O
4	Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPAR \hat{I}^3 signature. European Heart Journal, 2020, 41, 995-1005.	2.2	56
5	Shorter time to clinical decision in work-related asthma using a digital tool. ERJ Open Research, 2020, 6, 00259-2020.	2.6	2
6	Carotid Atheroma From Men Has Significantly Higher Levels of Inflammation and Iron Metabolism Enabled by Macrophages. Stroke, 2018, 49, 419-425.	2.0	46
7	Proteomics and multivariate modelling reveal sex-specific alterations in distinct regions of human carotid atheroma. Biology of Sex Differences, 2018, 9, 54.	4.1	12
8	Proteomic analysis and multivariate modelling reveal gender-specific alterations in distinct regions of human carotid atherosclerosis. Atherosclerosis, 2017, 263, e52.	0.8	0
9	Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages. PLoS ONE, 2017, 12, e0174475.	2.5	17
10	Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Scientific Reports, 2016, 6, 26231.	3.3	36
11	Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. Journal of Cellular and Molecular Medicine, 2016, 20, 1664-1672.	3.6	62
12	Autophagy Induction Protects against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress. Journal of Cell Death, 2016, 9, JCD.S37841.	0.8	32
13	Innate immune receptor NOD2 promotes vascular inflammation and formation of lipidâ€rich necrotic cores in hypercholesterolemic mice. European Journal of Immunology, 2014, 44, 3081-3092.	2.9	36
14	SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochemical and Biophysical Research Communications, 2013, 441, 737-742.	2.1	94
15	Expression of Egr1 and p53 in human carotid plaques and apoptosis induced by 7-oxysterol or p53. Experimental and Toxicologic Pathology, 2013, 65, 677-682.	2.1	7
16	Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine, 2012, 7, 705-717.	3.3	67
17	Cell death induced by 7-oxysterols via lysosomal and mitochondrial pathways is p53-dependent. Free Radical Biology and Medicine, 2012, 53, 2054-2061.	2.9	19
18	X-radiation inhibits histone deacetylase 1 and 2, upregulates Axin expression and induces apoptosis in non-small cell lung cancer. Radiation Oncology, 2012, 7, 183.	2.7	19

#	Article	IF	Citations
19	Lipid accumulation and lysosomal pathways contribute to dysfunction and apoptosis of human endothelial cells caused by 7-oxysterols. Biochemical and Biophysical Research Communications, 2011, 409, 711-716.	2.1	37
20	Lysosomal membrane permeabilization causes oxidative stress and ferritin induction in macrophages. FEBS Letters, 2011, 585, 623-629.	2.8	53
21	Dimethyl Sulfoxide Prevents 7β-Hydroxycholesterol-Induced Apoptosis by Preserving Lysosomes and Mitochondria. Journal of Cardiovascular Pharmacology, 2010, 56, 263-267.	1.9	11
22	p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis, 2010, 210, 392-399.	0.8	18
23	$7\hat{l}^2$ -hydroxycholesterol induces natural killer cell death via oxidative lysosomal destabilization. Free Radical Research, 2009, 43, 1072-1079.	3.3	7
24	LDL and UVâ€oxidized LDL induce upregulation of iNOS and NO in unstimulated J774 macrophages and HUVEC. Apmis, 2009, 117, 1-9.	2.0	12
25	X-Radiation Induces Non-Small-Cell Lung Cancer Apoptosis by Upregulation of Axin Expression. International Journal of Radiation Oncology Biology Physics, 2009, 75, 518-526.	0.8	21
26	Cathepsin L is significantly associated with apoptosis and plaque destabilization in human atherosclerosis. Atherosclerosis, 2009, 202, 92-102.	0.8	81
27	NK cell apoptosis in coronary artery disease. Atherosclerosis, 2008, 199, 65-72.	0.8	33
28	Iron Involvement in Multiple Signaling Pathways of Atherosclerosis: A Revisited Hypothesis. Current Medicinal Chemistry, 2008, 15, 2157-2172.	2.4	45
29	Overexpression of Transferrin Receptor and Ferritin Related to Clinical Symptoms and Destabilization of Human Carotid Plaques. Experimental Biology and Medicine, 2008, 233, 818-826.	2.4	54
30	Reduction of p120 ^{ctn} isoforms 1 and 3 is significantly associated with metastatic progression of human lung cancer. Apmis, 2007, 115, 848-856.	2.0	27
31	Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptotic effects. Free Radical Biology and Medicine, 2006, 41, 902-910.	2.9	73
32	Abnormal β-Catenin and Reduced Axin Expression Are Associated With Poor Differentiation and Progression in Non–Small Cell Lung Cancer. American Journal of Clinical Pathology, 2006, 125, 534-541.	0.7	48
33	Cytocidal effects of atheromatous plaque components: the death zone revisited. FASEB Journal, 2006, 20, 2281-2290.	0.5	45
34	Abnormal \hat{l}^2 -Catenin and Reduced Axin Expression Are Associated With Poor Differentiation and Progression in Non-Small Cell Lung Cancer. American Journal of Clinical Pathology, 2006, 125, 534-541.	0.7	47
35	Foam cell death induced by $7\hat{l}^2$ -hydroxycholesterol is mediated by labile iron-driven oxidative injury: Mechanisms underlying induction of ferritin in human atheroma. Free Radical Biology and Medicine, 2005, 39, 864-875.	2.9	38
36	Secretion of Ferritin by Iron-laden Macrophages and Influence of Lipoproteins. Free Radical Research, 2004, 38, 1133-1142.	3.3	53

3

#	Article	IF	CITATIONS
37	Macrophage Hemoglobin Scavenger Receptor and Ferritin Accumulation in Human Atherosclerotic Lesions. Annals of the New York Academy of Sciences, 2004, 1030, 196-201.	3.8	21
38	Enhanced Expression of Natural Resistance-Associated Macrophage Protein 1 in Atherosclerotic Lesions May Be Associated with Oxidized Lipid-Induced Apoptosis. Annals of the New York Academy of Sciences, 2004, 1030, 202-207.	3.8	11
39	Increased Expression and Translocation of Lysosomal Cathepsins Contribute to Macrophage Apoptosis in Atherogenesis. Annals of the New York Academy of Sciences, 2004, 1030, 427-433.	3.8	52
40	Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. Journal of Molecular and Cellular Cardiology, 2004, 37, 969-978.	1.9	68
41	Immunohistochemical and ultrastructural markers suggest different origins for cuboidal and polygonal cells in pulmonary sclerosing hemangioma. Human Pathology, 2004, 35, 503-508.	2.0	42
42	Effects of \hat{l}_{\pm} -tocopherol and astaxanthin on LDL oxidation and atherosclerosis in WHHL rabbits. Atherosclerosis, 2004, 173, 231-237.	0.8	35
43	The iron hypothesis of atherosclerosis and its clinical impact. Annals of Medicine, 2003, 35, 578-591.	3.8	75
44	3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochemical Journal, 2003, 371, 429-436.	3.7	61
45	Lysosomal destabilization in p53-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6286-6291.	7.1	209
46	Transdifferentiation of neoplastic cells. Medical Hypotheses, 2001, 57, 655-666.	1.5	9
47	Methylmercury and H2O2 provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radical Biology and Medicine, 2001, 30, 1347-1356.	2.9	68
48	Apoptotic Death of Inflammatory Cells in Human Atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1124-1130.	2.4	107
49	Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radical Biology and Medicine, 2000, 28, 208-218.	2.9	125
50	Induction of cell death by the lysosomotropic detergent MSDH. FEBS Letters, 2000, 470, 35-39.	2.8	216
51	Apoptotic macrophage-derived foam cells of human atheromas are rich in iron and ferritin, suggesting iron-catalysed reactions to be involved in apoptosis. Free Radical Research, 1999, 30, 221-231.	3. 3	52
52	Uptake of Oxidized LDL by Macrophages Results in Partial Lysosomal Enzyme Inactivation and Relocation. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 177-184.	2.4	108
53	OxLDL-induced macrophage cytotoxicity is mediated by lysosomal rupture and modified by intralysosomal redox-active iron. Free Radical Research, 1998, 29, 389-398.	3 . 3	53
54	The toxicity to macrophages of oxidized low-density lipoprotein is mediated through lysosomal damage. Atherosclerosis, 1997, 133, 153-161.	0.8	57

#	Article	IF	CITATIONS
55	Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis. Atherosclerosis, 1996, 124, 61-73.	0.8	109
56	Antioxidants in the prevention of atherosclerosis. Current Opinion in Lipidology, 1996, 7, 374-380.	2.7	21
57	Macrophage erythrophagocytosis and iron exocytosis. Redox Report, 1996, 2, 9-17.	4.5	16
58	Test-tube simulated lipofuscinogenesis. Effect of oxidative stress on autophagocytotic degradation. Mechanisms of Ageing and Development, 1995, 81, 37-50.	4.6	20
59	Effects of Iron- and Hemoglobin-Loaded Human Monocyte–Derived Macrophages on Oxidation and Uptake of LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1345-1351.	2.4	67