
Divya Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2073069/publications.pdf Version: 2024-02-01

DIVVA SDINIVASAN

#	Article	IF	CITATIONS
1	Effects of using a whole-body powered exoskeleton during simulated occupational load-handling tasks: A pilot study. Applied Ergonomics, 2022, 98, 103589.	3.1	10
2	Effects of back-support exoskeleton use on gait performance and stability during level walking. Gait and Posture, 2022, 92, 181-190.	1.4	16
3	Exoskeleton Training through Haptic Sensation Transfer in Immersive Virtual Environment. , 2022, , .		3
4	Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking. Annals of Biomedical Engineering, 2022, 50, 964-977.	2.5	4
5	Sensation transfer for immersive exoskeleton motor training: Implications of haptics and viewpoints. Automation in Construction, 2022, 141, 104411.	9.8	7
6	Postural balance effects from exposure to multi-axial whole-body vibration in mining vehicle operation. Applied Ergonomics, 2021, 91, 103307.	3.1	6
7	Human Gait During Level Walking With an Occupational Whole-Body Powered Exoskeleton: Not Yet a Walk in the Park. IEEE Access, 2021, 9, 47901-47911.	4.2	12
8	The effects of prolonged sitting, standing, and an alternating sit-stand pattern on trunk mechanical stiffness, trunk muscle activation and low back discomfort. Ergonomics, 2021, 64, 983-994.	2.1	15
9	Effects of two passive back-support exoskeletons on postural balance during quiet stance and functional limits of stability. Journal of Electromyography and Kinesiology, 2021, 57, 102516.	1.7	9
10	Development of supine and standing knee joint position sense tests. Physical Therapy in Sport, 2021, 49, 112-121.	1.9	8
11	Effects of back-support exoskeleton use on trunk neuromuscular control during repetitive lifting: A dynamical systems analysis. Journal of Biomechanics, 2021, 123, 110501.	2.1	6
12	Effects on variation in shoulder, forearm and low back muscle activity from combining seated computer work with other productive office tasks: results from a simulation study. Ergonomics, 2021, , 1-13.	2.1	0
13	Effects of Arm-Support Exoskeletons on Kinematics and Subjective Assessments During a Static Task. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 421-422.	0.3	1
14	A Framework for Virtual Reality-Based Motor Skills Training for the Use of Exoskeletons. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 277-278.	0.3	0
15	A preliminary decision tree modeling of factors that determine readiness to use exoskeletons in construction. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 419-420.	0.3	5
16	Changes in lower-limb joint torques when using a passive back-support exoskeleton for level walking. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 1369-1370.	0.3	0
17	Assessing the potential for "undesired―effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability. Applied Ergonomics, 2020, 89, 103194.	3.1	49
18	Multi-level modeling with nonlinear movement metrics to classify self-injurious behaviors in autism spectrum disorder. Scientific Reports, 2020, 10, 16699.	3.3	0

DIVYA SRINIVASAN

#	Article	IF	CITATIONS
19	Potential exoskeleton uses for reducing low back muscular activity during farm tasks. American Journal of Industrial Medicine, 2020, 63, 1017-1028.	2.1	22
20	Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands. Applied Ergonomics, 2020, 88, 103156.	3.1	66
21	Consistent individual motor variability traits demonstrated by females performing a long-cycle assembly task under conditions differing in temporal organisation. Applied Ergonomics, 2020, 85, 103046.	3.1	6
22	Biomechanical Evaluation of Passive Back-Support Exoskeletons in a Precision Manual Assembly Task: "Expected―Effects on Trunk Muscle Activity, Perceived Exertion, and Task Performance. Human Factors, 2020, 62, 441-457.	3.5	62
23	Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments During Repetitive Lifting. Human Factors, 2020, 62, 458-474.	3.5	80
24	Effects of Passive Back-Support Exoskeleton Designs on Trunk Muscle Activity and Energy Expenditure during Repetitive Lifting. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 886-887.	0.3	1
25	Effects of Back-Support Exoskeleton Use on Gait Performance. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 894-895.	0.3	0
26	Trapezius muscle activity variation during computer work performed by individuals with and without neck-shoulder pain. Applied Ergonomics, 2019, 81, 102908.	3.1	14
27	One-leg rise performance and associated knee kinematics in ACL-deficient and ACL-reconstructed persons 23 years post-injury. BMC Musculoskeletal Disorders, 2019, 20, 476.	1.9	2
28	Consistency of Sedentary Behavior Patterns among Office Workers with Long-Term Access to Sit-Stand Workstations. Annals of Work Exposures and Health, 2019, 63, 583-591.	1.4	9
29	Using Gait Variability to Predict Inter-individual Differences in Learning Rate of a Novel Obstacle Course. Annals of Biomedical Engineering, 2019, 47, 1191-1202.	2.5	11
30	The Potential for Exoskeletons to Improve Health and Safety in Agriculture—Perspectives from Service Providers. IISE Transactions on Occupational Ergonomics and Human Factors, 2019, 7, 222-229.	0.8	34
31	Effects of Mental and Physical Fatigue Inducing Tasks on Balance and Gait Characteristics. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1103-1104.	0.3	1
32	Effects of Multi-axial Whole Body Vibration Exposure on Postural Stability. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1046-1047.	0.3	0
33	Effects of Back Support Exoskeleton Use on Postural Stability. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1088-1089.	0.3	0
34	Effects of Using a Prototype Whole-Body Powered Exoskeleton for Performing Industrial Tasks. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1086-1087.	0.3	3
35	Assessment of Two Passive Back-Support Exoskeletons in a Simulated Precision Manual Assembly Task. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1078-1079.	0.3	5
36	Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. IISE Transactions on Occupational Ergonomics and Human Factors, 2019, 7, 185-191.	0.8	94

DIVYA SRINIVASAN

#	Article	IF	CITATIONS
37	Variation in upper extremity, neck and trunk postures when performing computer work at a sit-stand station. Applied Ergonomics, 2019, 75, 120-128.	3.1	21
38	Increased movement variability in one-leg hops about 20â€ ⁻ years after treatment of anterior cruciate ligament injury. Clinical Biomechanics, 2018, 53, 37-45.	1.2	9
39	Sex-Specific Links in Motor and Sensory Adaptations to Repetitive Motion–Induced Fatigue. Motor Control, 2018, 22, 149-169.	0.6	6
40	Differences in trapezius muscle activation patterns in office workers with and without chronic neck-shoulder pain, as quantified through exposure variation analysis. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 962-966.	0.3	0
41	Neuromuscular Control and Performance Differences Associated With Gender and Obesity in Fatiguing Tasks Performed by Older Adults. Frontiers in Physiology, 2018, 9, 800.	2.8	20
42	Gender and limb differences in temporal gait parameters and gait variability in ankle osteoarthritis. Gait and Posture, 2018, 65, 228-233.	1.4	16
43	Changes in movement variability and task performance during a fatiguing repetitive pointing task. Journal of Biomechanics, 2018, 76, 212-219.	2.1	48
44	Sit–Stand Tables With Semi-Automated Position Changes: A New Interactive Approach for Reducing Sitting in Office Work. IISE Transactions on Occupational Ergonomics and Human Factors, 2017, 5, 39-46.	0.8	14
45	Comparison of Sedentary Behaviors in Office Workers Using Sit-Stand Tables With and Without Semiautomated Position Changes. Human Factors, 2017, 59, 782-795.	3.5	14
46	Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task. Experimental Brain Research, 2017, 235, 389-400.	1.5	27
47	Differences in motor variability among individuals performing a standardized short-cycle manual task. Human Movement Science, 2017, 51, 17-26.	1.4	28
48	Influence of Work Pace on Upper Extremity Kinematics and Muscle Activity in a Short-Cycle Repetitive Pick-and-Place Task. Annals of Work Exposures and Health, 2017, 61, 356-368.	1.4	10
49	Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque. PLoS ONE, 2017, 12, e0170274.	2.5	8
50	The effect of sit-stand workstations to decrease sedentariness in office work. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 465-465.	0.3	0
51	Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task. European Journal of Applied Physiology, 2016, 116, 2357-2365.	2.5	63
52	Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task. European Journal of Applied Physiology, 2016, 116, 227-239.	2.5	22
53	Interventions to reduce sedentary behavior and increase physical activity during productive work: a systematic review. Scandinavian Journal of Work, Environment and Health, 2016, 42, 181-191.	3.4	101
54	Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task. Human Movement Science, 2015, 42, 89-99.	1.4	12

DIVYA SRINIVASAN

#	Article	IF	CITATIONS
55	Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. Journal of Electromyography and Kinesiology, 2015, 25, 121-129.	1.7	27
56	Nonlinear metrics assessing motor variability in a standardized pipetting task: Between- and within-subject variance components. Journal of Electromyography and Kinesiology, 2015, 25, 557-564.	1.7	20
57	The combined influence of task accuracy and pace on motor variability in a standardised repetitive precision task. Ergonomics, 2015, 58, 1388-1397.	2.1	19
58	The ability of non-computer tasks to increase biomechanical exposure variability in computer-intensive office work. Ergonomics, 2015, 58, 50-64.	2.1	12
59	Short- and long-term reliability of heart rate variability indices during repetitive low-force work. European Journal of Applied Physiology, 2015, 115, 803-812.	2.5	27
60	The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task. Ergonomics, 2015, 58, 128-139.	2.1	32
61	Effects of task characteristics on unimanual and bimanual movement times. Ergonomics, 2013, 56, 612-622.	2.1	5
62	Motor variability – an important issue in occupational life. Work, 2012, 41, 2527-2534.	1.1	13
63	Does the Central Nervous System learn to plan bimanual movements based on its expectation of availability of visual feedback?. Human Movement Science, 2012, 31, 1409-1424.	1.4	4
64	Motor variability in occupational health and performance. Clinical Biomechanics, 2012, 27, 979-993.	1.2	226
65	Eye–hand coordination of symmetric bimanual reaching tasks: temporal aspects. Experimental Brain Research, 2010, 203, 391-405.	1.5	25
66	S3 Amplitude Measured Using a Modified Implanted CRT-D Device Is Correlated to Left Atrial Pressure during Acute Pulmonary Edema Induction in Canines. Journal of Cardiac Failure, 2010, 16, S47.	1.7	0
67	Scheduling of Hand Movements in Bimanual Tasks. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 1, 612-620.	0.3	1
68	A Novel Approach to Quantify the Assistive Torque Profiles Generated by Passive Back-Support Exoskeletons. SSRN Electronic Journal, 0, , .	0.4	3