Hong-Jie Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/207302/hong-jie-zhang-publications-by-year.pdf

Version: 2024-04-16

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 30,846 150 594 h-index g-index citations papers 635 7.38 34,571 7.3 L-index avg, IF ext. citations ext. papers

#	Paper Paper	IF	Citations
594	Highly Plasticized Lanthanide Luminescence for Information Storage and Encryption Applications <i>Advanced Science</i> , 2022 , e2105108	13.6	8
593	Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. <i>ACS Applied Nano Materials</i> , 2022 , 5, 401-410	5.6	1
592	DNA-Based Concatenated Encoding System for High-Reliability and High-Density Data Storage <i>Small Methods</i> , 2022 , e2101335	12.8	1
591	Effect of Pr3+ concentration on the luminescent properties of Ca2LuScGa2Ge2O12 compound with garnet structure. <i>Journal of Solid State Chemistry</i> , 2022 , 306, 122758	3.3	0
590	Combinational application of metal-organic frameworks-based nanozyme and nucleic acid delivery in cancer therapy Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, e1773	9.2	1
589	A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications. <i>Chemical Engineering Journal</i> , 2022 , 432, 134265	14.7	O
588	Regulating chromium ions site occupancy and enhancing near-infrared luminescence properties of Sr2P2O7:Cr3+ phosphor through synthesizing under reduction atmosphere. <i>Materials Research Bulletin</i> , 2022 , 149, 111710	5.1	1
587	Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies <i>National Science Review</i> , 2022 , 9, nwab139	10.8	3
586	Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity <i>Small</i> , 2022 , e2200897	11	3
585	Dual-Site Single-Atom Catalysts with High Performance for Three-Way Catalysis <i>Advanced Materials</i> , 2022 , e2201859	24	2
584	Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis <i>Advanced Materials</i> , 2022 , e2110660	24	6
583	Design of a Novel Near-Infrared Luminescence Material Li2Mg3TiO6:Cr3+ with an Ultrawide Tuning Range Applied to Near-Infrared Light-Emitting Diodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 3839-3850	8.3	3
582	Engineered protein nanodrug as an emerging therapeutic tool Nano Research, 2022, 1-12	10	O
581	Engineered Protein-Au Bioplaster for Efficient Skin Tumor Therapy Advanced Materials, 2022, e211006	524	5
580	Engineering DNA-Guided Hydroxyapatite Bulk Materials with High Stiffness and Outstanding Antimicrobial Ability for Dental Inlay Applications <i>Advanced Materials</i> , 2022 , e2202180	24	O
579	A nanotheranostic agent based on Nd-doped YVO with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma <i>Light: Science and Applications</i> , 2022 , 11, 116	16.7	4
578	Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Self-Healing, and Magnetic Response Behaviors. <i>Advanced Materials</i> , 2021 , e2106208	24	3

(2021-2021)

577	A Tumor Microenvironment-Responsive Theranostic Agent for Synergetic Therapy of Disulfiram-Based Chemotherapy and Chemodynamic Therapy. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10880-10885	6.4	2	
576	Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. <i>Advanced Materials</i> , 2021 , 33, e2103936	24	6	
575	Selenium Vacancy Engineering Using BiSe Nanodots for Boosting Highly Efficient Photonic Hyperthermia. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	O	
574	Bioengineered Protein-based Adhesives for Biomedical Applications. <i>Chemistry - A European Journal</i> , 2021 ,	4.8	1	
573	Simultaneous Enhancement of Photoluminescence and Stability of CsPbCl Perovskite Enabled by Titanium Ion Dopant. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10746-10752	6.4	2	
572	Strong Coupling of Magnetism and Lattice Induces Near-Zero Thermal Expansion over Broad Temperature Windows in ErFe 10 V 2lk Mo x Compounds. <i>CCS Chemistry</i> , 2021 , 3, 1009-1015	7.2	6	
571	Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations. <i>Advanced Materials</i> , 2021 , 33, e2100098	24	18	
570	Single-phase white-emitting and tunable color phosphor Na3Sc2(PO4)3:Eu2+,Dy3+: Synthesis, luminescence and energy transfer. <i>Journal of Rare Earths</i> , 2021 ,	3.7	2	
569	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. <i>Angewandte Chemie</i> , 2021 , 133, 23880	3.6	1	
568	An Artificial Phase-Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. <i>Angewandte Chemie</i> , 2021 , 133, 12189-12196	3.6	3	
567	An Artificial Phase-Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12082-12089	16.4	18	
566	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23687-23694	16.4	21	
565	Removal of Uranyl Ion from Wastewater by Magnetic Adsorption Material of Polyaniline Combined with CuFe2O4. <i>Adsorption Science and Technology</i> , 2021 , 2021, 1-16	3.6	1	
564	Eu3+-doped BaLiZn3(BO3)3: A novel red-emitting phosphor for blue chips excited white LEDs. <i>Journal of Rare Earths</i> , 2021 ,	3.7	2	
563	A New Type of Biological Glue Derived from Fish Swim Bladder: Outstanding Adhesion and Surgical Applications. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100303	6.8	2	
562	Ultra-strong bio-glue from genetically engineered polypeptides. <i>Nature Communications</i> , 2021 , 12, 36	1317.4	32	
561	Proteinaceous Fibers with Outstanding Mechanical Properties Manipulated by Supramolecular Interactions. <i>CCS Chemistry</i> , 2021 , 3, 1669-1677	7.2	15	
560	Near-Infrared-Light-Responsive Copper Oxide Nanoparticles as Efficient Theranostic Nanoagents for Photothermal Tumor Ablation <i>ACS Applied Bio Materials</i> , 2021 , 4, 5266-5275	4.1	2	

559	In Situ Embedding Synthesis of Highly Stable CsPbBr3/CsPb2Br5@PbBr(OH) Nano/Microspheres through Water Assisted Strategy. <i>Advanced Functional Materials</i> , 2021 , 31, 2103275	15.6	12
558	A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering. <i>Nano Today</i> , 2021 , 38, 101115	17.9	6
557	Reversibly Photo-Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. <i>Angewandte Chemie</i> , 2021 , 133, 3259-3265	3.6	3
556	Ultra-Small Noble Metal Ceria-Based Catalytic Materials: From Synthesis to Application. <i>European Journal of Inorganic Chemistry</i> , 2021 , 2021, 689-701	2.3	2
555	Reversibly Photo-Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie - International Edition, 2021 , 60, 3222-3228	16.4	12
554	Recent Advances in Graphitic Carbon Nitride Supported Single-Atom Catalysts for Energy Conversion. <i>ChemCatChem</i> , 2021 , 13, 1250-1270	5.2	17
553	Tunable ultra-uniform Cs4PbBr6 perovskites with efficient photoluminescence and excellent stability for high-performance white light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 125	87 1 -12	8 ¹ 18
552	Cancer therapeutic strategies based on metal ions. <i>Chemical Science</i> , 2021 , 12, 12234-12247	9.4	3
551	Lanthanide upconversion and downshifting luminescence for biomolecules detection. <i>Nanoscale Horizons</i> , 2021 , 6, 766-780	10.8	15
550	Multivariant ligands stabilize anionic solvent-oriented EcsPbX nanocrystals at room temperature. <i>Nanoscale</i> , 2021 , 13, 4899-4910	7.7	4
549	Investigation on the photoluminescence and thermoluminescence of BaGa2O4:Bi3+ at extremely low temperatures. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1786-1793	7.1	4
548	Carambola-like BiTe superstructures with enhanced photoabsorption for highly efficient photothermal therapy in the second near-infrared biowindow. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7271-7277	7.3	5
547	Eu-Mn Charge Transfer and the Strong Charge-Spin-Electronic Coupling Behavior in EuMnO. <i>Inorganic Chemistry</i> , 2021 , 60, 1367-1379	5.1	
546	Novel multifunctional theranostic nanoagents based on Ho3+ for CT/MRI dual-modality imaging-guided photothermal therapy. <i>Science China Chemistry</i> , 2021 , 64, 558-564	7.9	5
545	Intense UV long persistent luminescence benefiting from the coexistence of Pr3+/Pr4+ in a praseodymium-doped BaLu2Al2Ga2SiO12 phosphor. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5206-52	16.1	11
544	Design of broadband near-infrared Y0.57La0.72Sc2.71(BO3)4:Cr3+ phosphors based on one-site occupation and their application in NIR light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11761-11771	7.1	8
543	Tuning emission color and improving the warm-white persistent luminescence of phosphor BaLuAlGaSiO:Pr Zn co-doping. <i>Dalton Transactions</i> , 2021 , 50, 12137-12146	4.3	2
542	Engineering CuS-conjugated upconverting nanocomposites for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7216-7228	7.3	1

Yolk hell nanoarchitecture for stabilizing a Ce2S3 anode 2021, 3, 709 1 541 Ultrawide Temperature Range Super-Invar Behavior of $R_{2}(Fe,Co)_{17}$ Materials (R = Rare Earth). 540 7.4 Physical Review Letters, 2021, 127, 055501 Azobenzene-Based Photomechanical Biomaterials. Advanced NanoBiomed Research, 2021, 1, 2100020 539 4 Extracellular Elastin Molecule Modulates Alzheimer Appynamics In Vitro and In Vivo by Affecting 538 10 7.2 Microglial Activities. CCS Chemistry, 2021, 3, 1830-1837 Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of 12.8 5 537 Cu-SSZ-13 for NH SCR of NO. Journal of Hazardous Materials, 2021, 416, 126194 Unraveling the physical chemistry and materials science of CeO2-based nanostructures. CheM, 2021 536 16.2 14 , 7, 2022-2059 Ball-Milling Induced Debonding of Surface Atoms from Metal Bulk for Construing 3.6 O 535 High-Performance Dual-Site Single-Atom Catalysts. Angewandte Chemie, 2021, 133, 23338 Ball-Milling Induced Debonding of Surface Atoms from Metal Bulk for Construing 16.4 High-Performance Dual-Site Single-Atom Catalysts. Angewandte Chemie - International Edition, 2021 6 534 , 60, 23154-23158 High performance blue and white phosphorescent organic light-emitting diodes obtained by sensitizing both light-emitting and electron transport layers. Journal of Luminescence, **2021**, 238, 11822 $\hat{\delta}^{.8}$ 3 533 Design of white-emitting optical temperature sensor based on energy transfer in a Bi3+, Eu3+ and 532 7.1 4 Tb3+ doped YBO3 crystal. Journal of Materials Chemistry C, 2021, 9, 7264-7273 CoO/CeO multi-shelled nanospheres derived from self-templated synthesis for efficient catalytic 531 4.3 1 CO oxidation. Dalton Transactions, 2021, 50, 9637-9642 Rapidly clearable MnCoO@PAA as novel nanotheranostic agents for T/T bimodal MRI 530 7.7 imaging-guided photothermal therapy. Nanoscale, 2021, 13, 16251-16257 One-step conversion of CsPbBr3 into Cs4PbBr6/CsPbBr3@Ta2O5 coreBhell microcrystals with 529 7.1 3 enhanced stability and photoluminescence. Journal of Materials Chemistry C, 2021, 9, 1228-1234 Synthesis and luminescence properties of a broadband near-infrared emitting non-gallate 528 4.3 persistent luminescence MgZnSnO:Cr phosphor. Dalton Transactions, 2021, 50, 5666-5675 Lanthanide-doped bismuth-based fluoride nanoparticles: controlled synthesis and ratiometric 527 3.3 4 temperature sensing. CrystEngComm, 2020, 22, 3432-3438 A Single-Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient 526 16.4 10 Catalysts. Angewandte Chemie - International Edition, 2020, 59, 13568-13574 A Single-Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient 6 3.6 525 Catalysts. Angewandte Chemie, 2020, 132, 13670-13676 In Situ Construction of Pt-Ni NF@Ni-MOF-74 for Selective Hydrogenation of p-Nitrostyrene by 6 4.8 Ammonia Borane. Chemistry - A European Journal, 2020, 26, 12539-12543

523	Sinter-resistant and high-efficient Pt/CeO2/NiAl2O4/Al2O3@SiO2 model catalysts with flomposite energy traps[]Science China Chemistry, 2020, 63, 519-525	7.9	3
522	Bioinspired and Mechanically Strong Fibers Based on Engineered Non-Spider Chimeric Proteins. <i>Angewandte Chemie</i> , 2020 , 132, 8225-8229	3.6	12
521	Engineered Near-Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. <i>Advanced Materials</i> , 2020 , 32, e2000964	24	25
520	Extracellular Matrix Proteins Involved in Alzheimer's Disease. <i>Chemistry - A European Journal</i> , 2020 , 26, 12101-12110	4.8	9
519	High-performance thermally activated delayed fluorescence organic light-emitting diodes with a wide gap phosphorescent complex as a sensitizer. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5984-5990	7.1	8
518	A theoretical study: Green phosphorescent iridium(III) complexes with low-efficiency roll-off. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5525	3.1	1
517	Bioinspired and Mechanically Strong Fibers Based on Engineered Non-Spider Chimeric Proteins. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8148-8152	16.4	26
516	Lanthanide-Based Photothermal Materials: Fabrication and Biomedical Applications <i>ACS Applied Bio Materials</i> , 2020 , 3, 3975-3986	4.1	12
515	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie</i> , 2020 , 132, 18370-183	7<u>4</u>6	4
514	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18213-18217	16.4	12
513	Multiporous Carbon Encapsulated Ni Nanoparticles Promoting Glycerol Valorisation towards Hydrogenation against Rearrangement Chinese Journal of Chemistry, 2020 , 38, 439-444	4.9	1
512	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie</i> , 2020 , 132, 4374-4378	3.6	10
511	Series of blue phospho-iridium complexes with m-filled phenyl imidazole ligands studied by density functional theory and time-dependent density functional theory. <i>Journal of Physical Organic Chemistry</i> , 2020 , 33, e4052	2.1	О
510	Pure-blue fluorescent organic light-emitting diodes by co-doping a supplementary host material into a light-emitting layer as an electron transport ladder. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 343	8 ⁷ -3 ¹ 44	4 ¹⁰
509	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie</i> , 2020 , 132, 4922-4926	3.6	3
508	Solvent-Free Plasticity and Programmable Mechanical Behaviors of Engineered Proteins. <i>Advanced Materials</i> , 2020 , 32, e1907697	24	16
507	Strategy for achieving multiferroic E-type magnetic order in orthorhombic manganites RMnO (R = La-Lu). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4905-4915	3.6	1
506	Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. <i>Biomaterials</i> , 2020 , 251, 120075	15.6	56

(2020-2020)

505	Manipulating Spin Alignments of (Y,Lu)Fe Intermetallic Compounds via Unusual Thermal Pressure. <i>Inorganic Chemistry</i> , 2020 , 59, 5247-5251	5.1	3	
504	Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. <i>Research</i> , 2020 , 2020, 6925296	7.8	12	
503	Density functional theory and time-dependent density functional study a series of iridium complexes with low-efficiency roll-off properties. <i>Molecular Physics</i> , 2020 , 118, e1718229	1.7	1	
502	Investigation of 4f-Related Electronic Transitions of Rare-Earth Doped ZnO Luminescent Materials: Insights from First-Principles Calculations. <i>ChemPhysChem</i> , 2020 , 21, 51-58	3.2	15	
501	A redox interaction-engaged strategy for multicomponent nanomaterials. <i>Chemical Society Reviews</i> , 2020 , 49, 736-764	58.5	15	
500	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4892-4896	16.4	16	
499	Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal in situ controlled growth strategy. <i>Nanoscale</i> , 2020 , 12, 3977-3987	7.7	7	
498	Design of a mixed-anionic-ligand system for a blue-light-excited orange-yellow emission phosphor Ba1.31Sr3.69(BO3)3Cl:Eu2+. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3040-3050	7.1	17	
497	MnO2©O-scroll©iO2©TQ2 as a low-temperature NH3-SCR catalyst with a wide SO2-tolerance temperature range. <i>New Journal of Chemistry</i> , 2020 , 44, 1733-1738	3.6	2	
496	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4344-4348	16.4	34	
495	Unveiling the Relationship between Energy Transfer and the Triplet Energy Level by Tuning Diarylethene within Europium(III) Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 661-668	5.1	6	
494	Insight into the Characteristics of 4f-Related Electronic Transitions for Rare-Earth-Doped KLuS2 Luminescent Materials through First-Principles Calculation. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 932-938	3.8	5	
493	In situ decorating of ultrasmall Ag2Se on upconversion nanoparticles as novel nanotheranostic agent for multimodal imaging-guided cancer photothermal therapy. <i>Applied Materials Today</i> , 2020 , 18, 100497	6.6	19	
492	Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. <i>Advanced Materials</i> , 2020 , 32, e1906360	24	53	
491	Process intensification for rare-earth doped luminescent nanomaterials. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 2497	3.2	1	
490	Unveiling the mechanism of rare earth doping to optimize the optical performance of the CsPbBr3 perovskite. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 4669-4676	6.8	1	
489	Engineering Gadolinium-Integrated Tellurium Nanorods for Theory-Oriented Photonic Hyperthermia in the NIR-II Biowindow. <i>Small</i> , 2020 , 16, e2003508	11	5	
488	Emerging biomaterials: Taking full advantage of the intrinsic properties of rare earth elements. Nano Today, 2020, 35, 100952	17.9	13	

487	Boosting Chemodynamic Therapy by the Synergistic Effect of Co-Catalyze and Photothermal Effect Triggered by the Second Near-Infrared Light. <i>Nano-Micro Letters</i> , 2020 , 12, 180	19.5	24
486	Role of "Dumbbell" Pairs of Fe in Spin Alignments and Negative Thermal Expansion of LuFe-Based Intermetallic Compounds. <i>Inorganic Chemistry</i> , 2020 , 59, 11228-11232	5.1	4
485	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. <i>Angewandte Chemie</i> , 2020 , 132, 21665-21671	3.6	5
484	Microscopic Mechanism Study of 4f Electrons Positive Effect on the Enhanced Proton Conduction in a Pr-Doped BaCeO3 Electrolyte. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 21232-21241	3.8	2
483	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21481-21487	16.4	23
482	Injectable and NIR-Responsive DNA-Inorganic Hybrid Hydrogels with Outstanding Photothermal Therapy. <i>Advanced Materials</i> , 2020 , 32, e2004460	24	45
481	NaSO Nanoparticles Trigger Antitumor Immunotherapy through Reactive Oxygen Species Storm and Surge of Tumor Osmolarity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21751-21757	16.4	41
480	Highly recyclable cysteamine-modified acid-resistant MOFs for enhancing Hg (II) removal from water. <i>Environmental Technology (United Kingdom)</i> , 2020 , 41, 3094-3104	2.6	10
479	Robust Synthesis of Gold-Based Multishell Structures as Plasmonic Catalysts for Selective Hydrogenation of 4-Nitrostyrene. <i>Angewandte Chemie</i> , 2020 , 132, 1119-1123	3.6	2
478	Robust Synthesis of Gold-Based Multishell Structures as Plasmonic Catalysts for Selective Hydrogenation of 4-Nitrostyrene. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1103-1107	16.4	17
477	Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. <i>Small</i> , 2020 , 16, e1907598	11	21
476	Neutron Diffraction Study of Unusual Magnetic Behaviors in the HoFeAl Intermetallic Compound. <i>Inorganic Chemistry</i> , 2019 , 58, 13742-13745	5.1	5
475	Clean synthesis of ZnCo2O4@ZnCo-LDHs yolkEhell nanospheres composed of ultra-thin nanosheets with enhanced electrocatalytic properties. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 220-225	6.8	10
474	Structural Micromodulation on Bi3+-Doped Ba2Ga2GeO7 Phosphor with Considerable Tunability of the Defect-Oriented Optical Properties. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 229-237	4	36
473	Renal Clearable Bi-BiS Heterostructure Nanoparticles for Targeting Cancer Theranostics. <i>ACS Applied Materials & District Materials & D</i>	9.5	29
472	A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10204-10208	16.4	41
471	A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 10310-10314	3.6	12
470	Synthesis of a Highly Active and Stable Pt/Co3O4 Catalyst and Its Application for the Catalytic Combustion of Toluene. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2933-2939	2.3	25

469	A highly active (102) surface-induced rapid degradation of a CuS nanotheranostic platform for in situ T-weighted magnetic resonance imaging-guided synergistic therapy. <i>Nanoscale</i> , 2019 , 11, 12853-12	2857	24
468	Green phosphorescent organic electroluminescent devices with 27.9% external quantum efficiency by employing a terbium complex as a co-dopant. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7953-7958	7.1	16
467	Tunable bimetallic Au-Pd@CeO for semihydrogenation of phenylacetylene by ammonia borane. <i>Nanoscale</i> , 2019 , 11, 12932-12937	7.7	24
466	Pure Red Iridium(III) Complexes Possessing Good Electron Mobility with 1,5-Naphthyridin-4-ol Derivatives for High-Performance OLEDs with an EQE over 31. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 20192-20199	9.5	20
465	MetalBrganic framework-based materials for the recovery of uranium from aqueous solutions. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1924-1937	6.8	56
464	Enhanced Performance for Selective Catalytic Reduction of NOx with NH3 over Nanosized Cu/SAPO-34 Catalysts. <i>ChemCatChem</i> , 2019 , 11, 3865-3870	5.2	8
463	Adjustable Magnetic Phase Transition Inducing Unusual Zero Thermal Expansion in Cubic RCo-Based Intermetallic Compounds (R = Rare Earth). <i>Inorganic Chemistry</i> , 2019 , 58, 5401-5405	5.1	6
462	Syntheses and Applications of Noble-Metal-free CeO2-Based Mixed-Oxide Nanocatalysts. <i>CheM</i> , 2019 , 5, 1743-1774	16.2	59
461	Commendable Pr3+-activated Ba2Ga2GeO7 phosphor with high-brightness white long-persistent luminescence. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6698-6705	7.1	22
460	A series of red iridium(III) complexes using flexible dithiocarbamate derivatives as ancillary ligands for highly efficient phosphorescent OLEDs. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 860-866	7.8	8
459	Efficient phosphorescent red iridium(III) complexes containing a four-membered IrBIIB ring backbone and large hindered spacers for high-performance OLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3862-3868	7.1	9
458	Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. <i>Nano Research</i> , 2019 , 12, 869-875	10	18
457	Configurationally Stable Platinahelicene Enantiomers for Efficient Circularly Polarized Phosphorescent Organic Light-Emitting Diodes. <i>Chemistry - A European Journal</i> , 2019 , 25, 5672-5676	4.8	55
456	Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. <i>Nano Today</i> , 2019 , 25, 38-67	17.9	64
455	Strategy to Induce Multiferroic Property in (RTiO) /(RVO) Superlattices: A First-Principles Study. <i>ChemPhysChem</i> , 2019 , 20, 1145-1152	3.2	
454	MnO2©Graphene-oxide-scroll©iO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition. <i>Catalysis Science and Technology</i> , 2019 , 9, 1602-1608	5.5	18
453	Half-Encapsulated Au [email[protected]2 [email[protected] Nanostructures for Near-Infrared Plasmon-Enhanced Catalysis. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1516-1524	5.6	19
452	Rapid room temperature synthesis of red iridium(iii) complexes containing a four-membered Ir-S-C-S chelating ring for highly efficient OLEDs with EQE over 30. <i>Chemical Science</i> , 2019 , 10, 3535-354	12 ^{9.4}	33

451	Combination of Pt@CeO2/MCM-56 and CeO2-CuO/MCM-56 to purify the exhaust emissions from diesel vehicles. <i>Applied Catalysis A: General</i> , 2019 , 570, 387-394	5.1	12
450	A bifunctional electrode engineered by sulfur vacancies for efficient electrocatalysis. <i>Nanoscale</i> , 2019 , 11, 16658-16666	7.7	12
449	Controllable Synthesis of Mesoporous TiO2 Polymorphs with Tunable Crystal Structure for Enhanced Photocatalytic H2 Production. <i>Advanced Energy Materials</i> , 2019 , 9, 1901634	21.8	88
448	Design strategies and applications of charged metal organic frameworks. <i>Coordination Chemistry Reviews</i> , 2019 , 398, 113007	23.2	45
447	Selective enhancement of green upconversion luminescence from NaYF4:Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing. <i>Journal of Luminescence</i> , 2019 , 215, 116632	3.8	14
446	Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. <i>Nano Letters</i> , 2019 , 19, 5093-5101	11.5	41
445	Oxygen migration and proton diffusivity in transition-metal (Mn, Fe, Co, and Cu) doped Ruddlesden Popper oxides. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18558-18567	13	25
444	Copper(I) Phosphide Nanocrystals for In Situ Self-Generation Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic Synergetic Therapy Resisting Deep-Seated Tumor. <i>Advanced Functional Materials</i> , 2019 , 29, 1904678	15.6	107
443	Plasmonic Pt Superstructures with Boosted Near-Infrared Absorption and Photothermal Conversion Efficiency in the Second Biowindow for Cancer Therapy. <i>Advanced Materials</i> , 2019 , 31, e190)4 24 36	64
442	Significant Upregulation of Alzheimer's Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18703-18709	16.4	23
441	CeO -Encapsulated Hollow Ag-Au Nanocage Hybrid Nanostructures as High-Performance Catalysts for Cascade Reactions. <i>Small</i> , 2019 , 15, e1903182	11	14
440	A Differential Evolution Algorithm Based on Multi-Population for Economic Dispatch Problems With Valve-Point Effects. <i>IEEE Access</i> , 2019 , 7, 95585-95609	3.5	18
439	Detection and Chiral Recognition of Hydroxyl Acid through 1H and CEST NMR Spectroscopy Using a Ytterbium Macrocyclic Complex. <i>Angewandte Chemie</i> , 2019 , 131, 18454-18457	3.6	7
438	Detection and Chiral Recognition of Hydroxyl Acid through H and CEST NMR Spectroscopy Using a Ytterbium Macrocyclic Complex. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18286-18289	16.4	18
437	Highly efficient green single-emitting layer phosphorescent organic light-emitting diodes with an iridium(III) complex as a hole-type sensitizer. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2744-2750	7.1	10
436	CeO2 supported low-loading Au as an enhanced catalyst for low temperature oxidation of carbon monoxide. <i>CrystEngComm</i> , 2019 , 21, 7108-7113	3.3	8
435	Ultrafine PdOx nanoparticles on spinel oxides by galvanic displacement for catalytic combustion of methane. <i>Catalysis Science and Technology</i> , 2019 , 9, 6404-6414	5.5	9
434	A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa2O4:Bi3+. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13088-13096	7.1	22

433	A novel monolith ZnS-ZIF-8 adsorption material for ultraeffective Hg (II) capture from wastewater. Journal of Hazardous Materials, 2019 , 367, 381-389	12.8	45
432	One-Dimensional Fe2P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics. <i>Angewandte Chemie</i> , 2019 , 131, 2429-2434	3.6	26
431	One-Dimensional Fe P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2407-2412	16.4	222
430	Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High-Performance Lithium/Sodium-Storage Properties in Half/Full Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1802993	21.8	92
429	DFT and TD-DFT study of iridium complexes with low-color-temperature and low-efficiency roll-off properties. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4563	3.1	4
428	Nanoporous Carbon-Coated Bimetallic Phosphides for Efficient Electrochemical Water Splitting. <i>Crystal Growth and Design</i> , 2018 , 18, 3404-3410	3.5	14
427	Co S Nanoparticles-Embedded N/S-Codoped Carbon Nanofibers Derived from Metal-Organic Framework-Wrapped CdS Nanowires for Efficient Oxygen Evolution Reaction. <i>Small</i> , 2018 , 14, e170403	5 ¹¹	85
426	Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping. <i>CrystEngComm</i> , 2018 , 20, 1945-1953	3.3	39
425	Investigating the Hybrid-Structure-Effect of CeO -Encapsulated Au Nanostructures on the Transfer Coupling of Nitrobenzene. <i>Advanced Materials</i> , 2018 , 30, 1704416	24	36
424	A New Co-P Nanocomposite with Ultrahigh Relaxivity for In Vivo Magnetic Resonance Imaging-Guided Tumor Eradication by Chemo/Photothermal Synergistic Therapy. <i>Small</i> , 2018 , 14, 1702	437	27
423	Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped KBiF upconversion nanoparticles. <i>Nanoscale</i> , 2018 , 10, 1394-1402	7.7	33
422	All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Microenvironment Ability for Effective Tumor Eradication. <i>ACS Nano</i> , 2018 , 12, 4886	-4893	355
421	Tuning charge transfer in the LaTiO3/RO/LaNiO3 (R = rare-earth) superlattices by the rare-earth oxides interfaces from a first-principles calculation. <i>Journal of Applied Physics</i> , 2018 , 123, 115304	2.5	1
420	Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. <i>Coordination Chemistry Reviews</i> , 2018 , 364, 10-32	23.2	109
419	Pt/CeO2@MOF [email[protected] Nanoreactor for Selective Hydrogenation of Furfural via the Channel Screening Effect. <i>ACS Catalysis</i> , 2018 , 8, 8506-8512	13.1	83
418	A general one-pot strategy for the synthesis of Au@multi-oxide yolk@shell nanospheres with enhanced catalytic performance. <i>Chemical Science</i> , 2018 , 9, 7569-7574	9.4	28
417	A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 661-664	2.2	6
416	Surfactant-Guided Synthesis of Porous Pt Shells with Ordered Tangential Channels, Coated on Pd Nanostructures, and Their Enhanced Catalytic Activities. <i>Chemistry - A European Journal</i> , 2018 , 24, 1564	 9 ⁴ 1865	5 ⁵

415	Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. <i>Carbon</i> , 2018 , 135, 253-259	10.4	47
414	Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS nanodots by "rookie method" for in vivo dual-modal CT/PA imaging and simultaneous photothermal therapy. <i>Nanoscale</i> , 2018 , 10, 16	7 <i>63</i> -16	7 7 4
413	Highly efficient green organic light-emitting devices based on terbium complex by employing hole block material as host. <i>Science China Technological Sciences</i> , 2018 , 61, 1334-1339	3.5	11
412	MIL-101(Cr) metalBrganic framework functionalized with tetraethylenepentamine for potential removal of Uranium (VI) from waste water. <i>Adsorption Science and Technology</i> , 2018 , 36, 1550-1567	3.6	19
411	Remote manipulation of upconversion luminescence. <i>Chemical Society Reviews</i> , 2018 , 47, 6473-6485	58.5	139
410	Rewritable Optical Memory Through High-Registry Orthogonal Upconversion. <i>Advanced Materials</i> , 2018 , 30, e1801726	24	85
409	Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. Journal of Materials Chemistry C, 2018 , 6, 7527-7532	7.1	88
408	Multifunctional Cu-AgS nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo. <i>Nanoscale</i> , 2018 , 10, 825-831	7.7	49
407	Sol-Gel Preparation of Perovskite Oxides Using Ethylene Glycol and Alcohol Mixture as Complexant and Its Catalytic Performances for CO Oxidation. <i>ChemistrySelect</i> , 2018 , 3, 12250-12257	1.8	5
406	Strong-correlated behavior of 4f electrons and 4f5d hybridization in PrO. Scientific Reports, 2018, 8, 15	99459	4
405	Insight into the Mechanism of the Ionic Conductivity for Ln-Doped Ceria (Ln = La, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, and Tm) through First-Principles Calculation. <i>Inorganic Chemistry</i> , 2018 , 57, 12690-12	:6 9 6	18
404	Origin of Color Centers in the Perovskite Oxide CeAlO. <i>ChemPlusChem</i> , 2018 , 83, 976-983	2.8	3
403	Thermal Decomposition of CdS Nanowires Assisted by ZIF-67 to Induce the Formation of Co9S8-Based Carbon Nanomaterials with High Lithium-Storage Abilities. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6242-6249	6.1	7
402	Synthesis and Luminescence Properties of Bi-Activated KMgGeO: A Promising High-Brightness Orange-Emitting Phosphor for WLEDs Conversion. <i>Inorganic Chemistry</i> , 2018 , 57, 12303-12311	5.1	78
401	Density Functional Characterization of the 4f-Relevant Electronic Transitions of Lanthanide-Doped Lu O Luminescence Materials. <i>ChemPhysChem</i> , 2018 , 19, 2947-2953	3.2	10
400	Highly sensitive and selective detection of Fe 3+ by utilizing carbon quantum dots as fluorescent probes. <i>Chemical Physics Letters</i> , 2018 , 705, 1-6	2.5	25
399	Simple construction of CuS:Pt nanoparticles as nanotheranostic agent for imaging-guided chemo-photothermal synergistic therapy of cancer. <i>Nanoscale</i> , 2018 , 10, 10945-10951	7.7	19
398	Developing near-infrared long-lasting phosphorescence of Yb through a medium: insights into energy transfer in the novel material ZnLiPO:Yb. <i>Dalton Transactions</i> , 2018 , 47, 9814-9823	4.3	7

(2017-2017)

397	High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2066-2073	7.1	25
396	Self-supported Co3O4 wire-penetrated-cage hybrid arrays with enhanced supercapacitance properties. <i>CrystEngComm</i> , 2017 , 19, 1459-1463	3.3	9
395	Multishelled Ni Co O Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries. <i>Small</i> , 2017 , 13, 1604270	11	95
394	The effect of Gd and Zn additions on microstructures and mechanical properties of Mg-4Sm-3Nd-Zr alloy. <i>Journal of Alloys and Compounds</i> , 2017 , 706, 526-537	5.7	15
393	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. <i>Coordination Chemistry Reviews</i> , 2017 , 337, 80-96	23.2	225
392	Theoretical Study on the Negative Thermal Expansion Perovskite LaCuFeO: Pressure-Triggered Transition of Magnetism, Charge, and Spin State. <i>Inorganic Chemistry</i> , 2017 , 56, 6371-6379	5.1	7
391	Proton-conducting crystalline porous materials. <i>Chemical Society Reviews</i> , 2017 , 46, 464-480	58.5	394
390	A Simple Strategy for the Controlled Synthesis of Ultrasmall Hexagonal-Phase NaYF4:Yb,Er Upconversion Nanocrystals. <i>ChemPhotoChem</i> , 2017 , 1, 369-375	3.3	15
389	PEGylated GdF:Fe Nanoparticles as Multimodal T/T-Weighted MRI and X-ray CT Imaging Contrast Agents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20426-20434	9.5	39
388	The size-responsive phase transition mechanism and upconversion/downshifting luminescence properties of KLu2F7:Yb3+/Er3+ nanocrystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6311-6318	7.1	7
387	Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. <i>Nano Research</i> , 2017 , 10, 3434-3446	10	52
386	Ultrafast Synthesis of Novel Hexagonal Phase NaBiF Upconversion Nanoparticles at Room Temperature. <i>Advanced Materials</i> , 2017 , 29, 1700505	24	94
385	S,N co-doped carbon nanotubes decorated with ultrathin molybdenum disulfide nanosheets with highly electrochemical performance. <i>Nanoscale</i> , 2017 , 9, 6346-6352	7.7	18
384	High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4219-4.	2 <i>7</i> 51	10
383	Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO Shell) Nanocatalysts via Autoredox Reaction. <i>Advanced Materials</i> , 2017 , 29, 1605332	24	62
382	Efficient orange-red electroluminescence of iridium complexes with 1-(2,6-bis(trifluoromethyl)pyridin-4-yl)isoquinoline and 4-(2,6-bis(trifluoromethyl)pyridin-4-yl)quinazoline ligands. <i>Dalton Transactions</i> , 2017 , 46, 14916-14925	4.3	14
381	Binary temporal upconversion codes of Mn-activated nanoparticles for multilevel anti-counterfeiting. <i>Nature Communications</i> , 2017 , 8, 899	17.4	202
380	A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles. Journal of Materials Chemistry C, 2017 , 5, 9666-9672	7.1	9

379	Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF4 upconversion nanoparticles. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9659-9665	7.1	43
378	Double-mesoporous core-shell nanosystems based on platinum nanoparticles functionalized with lanthanide complexes for in vivo magnetic resonance imaging and photothermal therapy. Nanoscale, 2017, 9, 16012-16023	7.7	29
377	Highly efficient orange-red electroluminescence of iridium complexes with good electron mobility. Journal of Materials Chemistry C, 2017 , 5, 8150-8159	7.1	19
376	Ultrafast Synthesis of Ultrasmall Poly(Vinylpyrrolidone)-Protected Bismuth Nanodots as a Multifunctional Theranostic Agent for In Vivo Dual-Modal CT/Photothermal-Imaging-Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1702018	15.6	157
375	Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R=rareearth): Synergistic effects of local structures and 4f electrons. <i>Physical Review B</i> , 2017 , 96,	3.3	4
374	MnO-Functionalized Co-P Nanocomposite: A New Theranostic Agent for pH-Triggered T/T Dual-Modality Magnetic Resonance Imaging-Guided Chemo-photothermal Synergistic Therapy. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 41648-41658	9.5	40
373	Confining the Nucleation of Pt to In Situ Form (Pt-Enriched Cage)@CeO Core@Shell Nanostructure as Excellent Catalysts for Hydrogenation Reactions. <i>Advanced Materials</i> , 2017 , 29, 1700495	24	61
372	Solid ion transition route to 3D SN-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. <i>Nano Research</i> , 2017 , 10, 3486-3495	10	9
371	One-Pot Synthesis of Cobalt-Doped PtAu Alloy Nanoparticles Supported on Ultrathin Co(OH)2 Nanosheets and Their Enhanced Performance in the Reduction of p-Nitrophenol. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 146-152	2.3	5
370	Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. <i>Nanoscale</i> , 2017 , 9, 491-496	7.7	162
369	Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer. <i>Dyes and Pigments</i> , 2017 , 136, 361-367	4.6	18
368	Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels. <i>Journal of Luminescence</i> , 2016 , 170, 692-696	5 ^{3.8}	24
367	High performance red organic electroluminescent devices based on a trivalent iridium complex with stepwise energy levels. <i>RSC Advances</i> , 2016 , 6, 71282-71286	3.7	6
366	A "Solid Dual-Ions-Transformation" Route to S,N Co-Doped Carbon Nanotubes as Highly Efficient "Metal-Free" Catalysts for Organic Reactions. <i>Advanced Materials</i> , 2016 , 28, 10679-10683	24	88
365	Facile synthesis of nitrogen-doped carbon dots with robust fluorescence in a strongly alkaline solution and a reversible fluorescence bffbnßwitch between strongly acidic and alkaline solutions. RSC Advances, 2016, 6, 108203-108208	3.7	11
364	Graphene-Oxide-Directed Hydrothermal Synthesis of Ultralong M(VO3)n Composite Nanoribbons. <i>Chemistry of Materials</i> , 2016 , 28, 4815-4820	9.6	8
363	Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure. <i>Dalton Transactions</i> , 2016 , 45, 11522-7	4.3	3
362	Core-shell-shell heterostructures of <code>BNaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence. Dalton Transactions, 2016, 45, 11129-36</code>	4.3	14

361	L-Arginine-Triggered Self-Assembly of CeO2 Nanosheaths on Palladium Nanoparticles in Water. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4542-6	16.4	53
360	Highly efficient pure red organic light-emitting devices based on tris(1-phenyl-isoquinoline) iridium(III) with another wide gap iridium(III) complex as sensitizer. <i>Dyes and Pigments</i> , 2016 , 128, 26-32	4.6	16
359	Efficient organic blue fluorescent light-emitting devices with improved carriers' balance on emitter molecules by constructing supplementary light-emitting layer. <i>Dyes and Pigments</i> , 2016 , 130, 148-153	4.6	18
358	Dual-functional ENaYb(Mn)F4:Er3+@NaLuF4 nanocrystals with highly enhanced red upconversion luminescence. <i>RSC Advances</i> , 2016 , 6, 33493-33500	3.7	5
357	The redispersion behaviour of Pt on the surface of Fe2O3. RSC Advances, 2016, 6, 25894-25899	3.7	7
356	Luminescence Mechanistic Study of BaLaGa3O7:Nd Using Density Functional Theory Calculations. <i>Inorganic Chemistry</i> , 2016 , 55, 2855-63	5.1	13
355	Nanoconfined nitrogen-doped carbon-coated MnO nanoparticles in graphene enabling high performance for lithium-ion batteries and oxygen reduction reaction. <i>Chemical Science</i> , 2016 , 7, 4284-42	29 0	112
354	An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg2+ ion. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 376-380	6.8	33
353	Lanthanide doped Bi2O3 upconversion luminescence nanospheres for temperature sensing and optical imaging. <i>Dalton Transactions</i> , 2016 , 45, 2686-93	4.3	55
352	CoreBhell BaYbF5:Tm@BaGdF5:Yb,Tm nanocrystals for in vivo trimodal UCL/CT/MR imaging. <i>RSC Advances</i> , 2016 , 6, 14283-14289	3.7	16
351	CeO nanowires self-inserted into porous CoO frameworks as high-performance "noble metal free" hetero-catalysts. <i>Chemical Science</i> , 2016 , 7, 1109-1114	9.4	63
350	l-Arginine-Triggered Self-Assembly of CeO2 Nanosheaths on Palladium Nanoparticles in Water. <i>Angewandte Chemie</i> , 2016 , 128, 4618-4622	3.6	11
349	Efficient green electroluminescent devices based on iridium complex with wide energy gap complexes as sensitizers. <i>Organic Electronics</i> , 2016 , 37, 85-92	3.5	10
348	Green organic light-emitting devices with external quantum efficiency up to nearly 30% based on an iridium complex with a tetraphenylimidodiphosphinate ligand. <i>RSC Advances</i> , 2016 , 6, 63200-63205	3.7	17
347	Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. <i>Chemical Science</i> , 2016 , 7, 6695-6700	9.4	95
346	Bimetallic Effects of Silver-Modified Nickel Catalysts and their Synergy in Glycerol Hydrogenolysis. <i>ChemCatChem</i> , 2016 , 8, 1929-1936	5.2	9
345	A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. <i>Chemistry - A European Journal</i> , 2016 , 22, 477-80	4.8	133
344	Innenräktitelbild: l-Arginine-Triggered Self-Assembly of CeO2 Nanosheaths on Palladium Nanoparticles in Water (Angew. Chem. 14/2016). <i>Angewandte Chemie</i> , 2016 , 128, 4687-4687	3.6	

343	Rational design of Nd(3+)-sensitized multifunctional nanoparticles with highly dominant red emission. <i>Dalton Transactions</i> , 2016 , 45, 8440-6	4.3	6
342	Foundations of Up-conversion Nanoparticles 2016 , 215-236		
341	Optimization of Bi in Upconversion Nanoparticles Induced Simultaneous Enhancement of Near-Infrared Optical and X-ray Computed Tomography Imaging Capability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 27490-27497	9.5	59
340	Highly Efficient Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Iridium Complexes Containing Pinene Sterically Hindered Spacer. <i>Advanced Optical Materials</i> , 2016 , 4, 1726-173	3 ^{8.1}	28
339	□AlO supported Pd@CeO core@shell nanospheres: salting-out assisted growth and self-assembly, and their catalytic performance in CO oxidation. <i>Chemical Science</i> , 2015 , 6, 2877-2884	9.4	76
338	Lanthanide Ion Codoped Emitters for Tailoring Emission Trajectory and Temperature Sensing. <i>Advanced Functional Materials</i> , 2015 , 25, 1463-1469	15.6	226
337	(L)-Lysine-assisted fabrication of PdxPt1-x/Ni(OH)2 (0 lk ll) hybrids with composition-dependent catalytic properties. <i>Dalton Transactions</i> , 2015 , 44, 2425-30	4.3	12
336	High performance yellow organic electroluminescent devices by doping iridium(III) complex into host materials with stepwise energy levels. <i>Journal of Luminescence</i> , 2015 , 166, 259-263	3.8	10
335	Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. <i>Biomaterials</i> , 2015 , 65, 115-23	15.6	43
334	Rare Earth Complex as Electron Trapper and Energy Transfer Ladder for Efficient Red Iridium Complex Based Electroluminescent Devices. <i>ACS Applied Materials & Devices</i> , 2015, 7, 16046-53	9.5	41
333	Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature. <i>Mikrochimica Acta</i> , 2015 , 182, 1653-1660	5.8	30
332	Microwave-assisted synthesis of nanoscale Eu(BTC)(H2O)[DMF with tunable luminescence. <i>Science China Chemistry</i> , 2015 , 58, 973-978	7.9	8
331	CeO2-encapsulated noble metal nanocatalysts: enhanced activity and stability for catalytic application. <i>NPG Asia Materials</i> , 2015 , 7, e179-e179	10.3	82
330	Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. <i>Nano Research</i> , 2015 , 8, 1944-1955	10	43
329	A Temperature-Responsive Smart Europium Metal-Organic Framework Switch for Reversible Capture and Release of Intrinsic Eu Ions. <i>Advanced Science</i> , 2015 , 2, 1500012	13.6	71
328	Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2015 , 294, 9-16	12.8	69
327	NdD+-sensitized NaLuFDuminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. <i>Nanoscale</i> , 2015 , 7, 17861-70	7.7	66
326	Efficient single light-emitting layer pure blue phosphorescent organic light-emitting devices with wide gap host and matched interlayer. <i>Journal of Luminescence</i> , 2015 , 168, 38-42	3.8	5

(2015-2015)

Pt nanohelices with highly ordered horizontal pore channels as enhanced photothermal materials. <i>Chemical Science</i> , 2015 , 6, 6420-6424	9.4	19
ENaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 20813-9	9.5	100
Cubic KLu3F10 nanocrystals: Mn(2+) dopant-controlled synthesis and upconversion luminescence. <i>Dalton Transactions</i> , 2015 , 44, 17286-92	4.3	12
A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2015 , 51, 376-9	5.8	90
Superior catalytic performance of Ce1\(\text{B}\) ixO2\(\text{B}\) olid solution and Au/Ce1\(\text{B}\) ixO2\(\text{F}\) or 5-hydroxymethylfurfural conversion in alkaline aqueous solution. <i>Catalysis Science and Technology</i> , 2015 , 5, 1314-1322	5.5	75
An unprecedented ten-connected 3D metalorganic framework based on hexanuclear cobalt(II) cluster building blocks. <i>Inorganic Chemistry Communication</i> , 2015 , 51, 9-12	3.1	7
ZnO-Functionalized Upconverting Nanotheranostic Agent: Multi-Modality Imaging-Guided Chemotherapy with On-Demand Drug Release Triggered by pH. <i>Angewandte Chemie</i> , 2015 , 127, 546-55	03.6	37
ZnO-functionalized upconverting nanotheranostic agent: multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 536-40	16.4	60
Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13312-7	16.4	57
Encapsulation of Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors. <i>Chemistry - A European Journal</i> , 2015 , 21, 9748-52	4.8	111
Strongly Coupled Pt-Ni2 GeO4 Hybrid Nanostructures as Potential Nanocatalysts for CO Oxidation. <i>Chemistry - A European Journal</i> , 2015 , 21, 14768-71	4.8	4
Strongly Coupled Pt?Ni Co O Hybrid Nanoflowers with Remarkably Enhanced Catalytic Performance. <i>ChemPlusChem</i> , 2015 , 80, 1241-1244	2.8	2
Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 13510-13515	3.6	24
Ybl+/Erl+-Codoped Bi Dl Nanospheres: Probe for Upconversion Luminescence Imaging and Binary Contrast Agent for Computed Tomography Imaging. <i>ACS Applied Materials & Computed Sciences</i> , 2015 , 7, 26346-54	9.5	65
Investigation of ZnCo2O4-Pt hybrids with different morphologies towards catalytic CO oxidation. <i>Dalton Transactions</i> , 2015 , 44, 21124-30	4.3	5
Effect of Ce/La microalloying on microstructural evolution of Mg-Zn-Ca alloy during solution treatment. <i>Journal of Rare Earths</i> , 2015 , 33, 70-76	3.7	28
Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2D supported Pt catalyst at room temperature. <i>RSC Advances</i> , 2015 , 5, 19823-19829	3.7	49
Highly thermostable lanthanide metalBrganic frameworks exhibiting unique selectivity for nitro explosives. <i>RSC Advances</i> , 2015 , 5, 93-98	3.7	45
	Chemical Science, 2015, 6, 6420-6424 BNaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range. ACS Applied Materials & Damp: Interfaces, 2015, 7, 20813-9 Cubic KLu3F10 nanocrystals: Mn(2+) dopant-controlled synthesis and upconversion luminescence. Dalton Transactions, 2015, 44, 17286-92 A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. Chemical Communications, 2015, 51, 376-9 A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. Chemical Communications, 2015, 51, 376-9 Superior catalytic performance of Ce1iBixO2Boild solution and Au/Ce1iBixO2Ifor 5-hydroxymethylfurfural conversion in alkaline aqueous solution. Catalysis Science and Technology, 2015, 5, 1314-1322 An unprecedented ten-connected 3D metalibrganic framework based on hexanuclear cobalt(III) cluster building blocks. Inorganic Chemistry Communication, 2015, 51, 9-12 ZnO-Functionalized Upconverting Nanotheranostic Agent: Multi-Modality Imaging-Guided Chemotherapy with On-Demand Drug Release Triggered by pH. Angewandte Chemie, 2015, 127, 546-55 ZnO-functionalized upconverting nanotheranostic agent: multi-modality imaging-guided chemotherapy with on-Demand drug release triggered by pH. Angewandte Chemie International Edition, 2015, 54, 338-40 Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. Angewandte Chemie International Edition, 2015, 54, 13312-7 Encapsulation of Ln(III) Ions/Dyse within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors. Chemistry - A European Journal, 2015, 21, 14768-71 Strongly Coupled Pt-Ni2 GeO4 Hybrid Nanoflowers with Remarkably Enhanced Catalytic Performance. ChemPlusChem, 2015, 80, 1241-1244 Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. Angewandte Chemie, 2015, 127, 13510-13515 Ybil-Fich-Codoped BiDNanospheres: Probe for Upconversion Luminescence Imaging	Chemical Science, 2015, 6, 6420-6424 RNaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range. ACS Applied Materials & amp; Interfaces, 2015, 7, 20813-9 95 Cubic KLu3F10 nanocrystals: Mn(2-) dopant-controlled synthesis and upconversion luminescence. Dalton Transactions, 2015, 44, 17286-92 A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. Chemical Communications, 2015, 51, 376-9 Superior catalytic performance of Ce18BixO2Bolid solution and Au/Ce18BixO2Bor 5-hydroxymethylFurfural conversion in alkaline aqueous solution. Catalysis Science and Technology, 2015, 5, 1314-1322 An unprecedented ten-connected 3D metalBrganic framework based on hexanuclear cobalt(II) cluster building blocks. Inorganic Chemistry Communication, 2015, 51, 9-12 ZnO-Functionalized Upconverting Nanotheranostic Agent: Multi-Modality Imaging-Guided Chemotherapy with On-Demand Drug Release Triggered by pH. Angewandte Chemie, 2015, 127, 546-550 ^{3,6} ZnO-functionalized upconverting nanotheranostic agent: multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angewandte Chemie. International Edition, 2015, 54, 536-40 Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. Angewandte Chemie-International Edition, 2015, 54, 13312-7 Encapsulation of Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors. Chemistry - A European Journal, 2015, 21, 14768-71 Strongly Coupled Pt-Ni2 GeO4 Hybrid Nanostructures as Potential Nanocatalysts for CO Oxidation. Chemistry - A European Journal, 2015, 80, 1241-1244 Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. Angewandte Chemie, 2015, 127, 13510-13515 Strongly Coupled Pt-Ni2 Geo4 Hybrid Nanostructures as Potential Nanocatalysts for CO Oxidation. 20

307	Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface. <i>NPG Asia Materials</i> , 2015 , 7, e158-e158	10.3	58
306	Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer. <i>Journal of Luminescence</i> , 2014 , 148, 6-9	3.8	8
305	Constructing porous MOF based on the assembly of layer framework and p-sulfonatocalix[4]arene nanocapsule with proton-conductive property. <i>CrystEngComm</i> , 2014 , 16, 64-68	3.3	27
304	A europium(III) based metal@rganic framework: bifunctional properties related to sensing and electronic conductivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 237-244	13	131
303	Fe3O4@SiO2@TiO2@Pt Hierarchical CoreBhell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle. <i>Crystal Growth and Design</i> , 2014 , 14, 5506-5511	3.5	64
302	Luminescent Lanthanide Metal©rganic Frameworks. Structure and Bonding, 2014, 109-144	0.9	17
301	Multifunctional nanostructures based on porous silica covered Fe3O4@CeO2-Pt composites: a thermally stable and magnetically-recyclable catalyst system. <i>Chemical Communications</i> , 2014 , 50, 7198	- 20 1	27
300	Pure and intense orange upconversion luminescence of Eu3+ from the sensitization of Yb3+Mn2+ dimer in NaY(Lu)F4 nanocrystals. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9004-9011	7.1	32
299	Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. <i>Nanotechnology</i> , 2014 , 25, 482001	3.4	115
298	Efficient red electroluminescent devices with sterically hindered phosphorescent platinum(II) Schiff base complexes and iridium complex codopant. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2984-94	4.5	44
297	Investigation of the Redispersion of Pt Nanoparticles on Polyhedral Ceria Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2479-83	6.4	37
296	One-step synthesis of water-soluble hexagonal NaScF4:Yb/Er nanocrystals with intense red emission. <i>Dalton Transactions</i> , 2014 , 43, 10202-7	4.3	35
295	Photophysical properties and theoretical calculations of Cu(I) dendrimers. <i>Journal of Luminescence</i> , 2014 , 148, 103-110	3.8	1
294	Metal-decorated Ni7S6 composite microflowers: Synthesis, characterization, and application. <i>Materials Research Bulletin</i> , 2014 , 53, 199-204	5.1	5
293	Chiral nematic mesoporous films of ZrOŒuŪ+: new luminescent materials. <i>Dalton Transactions</i> , 2014 , 43, 15321-7	4.3	46
292	Injection, transport, absorption and phosphorescence properties of a series of platinum (II) complexes with N-heterocyclic carbenes: a DFT and time-dependent DFT study. <i>Journal of Molecular Modeling</i> , 2014 , 20, 2437	2	2
291	Co(3)O(4)@CeO(2) core@shell cubes: designed synthesis and optimization of catalytic properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 4469-73	4.8	66
290	High-performance ZnCoD@CeO2Itore@shell microspheres for catalytic CO oxidation. <i>ACS Applied Materials & District Applied & D</i>	9.5	87

289	A Eu/Tb-codoped coordination polymer luminescent thermometer. <i>Inorganic Chemistry Frontiers</i> , 2014 , 1, 757-760	6.8	53
288	A long-wave optical pH sensor based on red upconversion luminescence of NaGdF4 nanotubes. <i>RSC Advances</i> , 2014 , 4, 55897-55899	3.7	12
287	Single-Crystal-to-Single-Crystal Transformation of a Europium(III) Metal®rganic Framework Producing a Multi-responsive Luminescent Sensor. <i>Advanced Functional Materials</i> , 2014 , 24, 4034-4041	15.6	488
286	Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. <i>CrystEngComm</i> , 2013 , 15, 7142	3.3	47
285	Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. <i>Dalton Transactions</i> , 2013 , 42, 12101-8	4.3	43
284	Design and Synthesis of Enantiomerically Pure Chiral Sandwichlike Lamellar Structure: New Explorations from Molecular Building Blocks to Three-Dimensional Morphology. <i>Crystal Growth and Design</i> , 2013 , 13, 976-980	3.5	7
283	Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. <i>Biomaterials</i> , 2013 , 34, 7715-24	15.6	302
282	Employing tripodal carboxylate ligand to construct Co(II) coordination networks modulated by N-donor ligands: syntheses, structures and magnetic properties. <i>Dalton Transactions</i> , 2013 , 42, 13231-4	o ^{4.3}	23
281	Near infrared and visible luminescence from xerogels covalently grafted with lanthanide [Sm(3+), Yb(3+), Nd(3+), Er(3+), Pr(3+), Ho(3+)] 时iketonate derivatives using visible light excitation. <i>ACS Applied Materials & Distriction (Small)</i> 10	9.5	70
280	Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15864-72	16.4	288
279	One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. Journal of Materials Chemistry A, 2013 , 1, 11043	13	304
278	Supramolecular isomerism, single-crystal to single-crystal transformation induced by release of in situ generated I2 between two supramolecular frameworks. <i>Dalton Transactions</i> , 2013 , 42, 5619-22	4.3	8
277	Microwave-assisted synthesis and down- and up-conversion luminescent properties of BaYF5:Ln (Ln = Yb/Er, Ce/Tb) nanocrystals. <i>CrystEngComm</i> , 2013 , 15, 7640	3.3	10
276	Facile synthesis and thermoelectric properties of self-assembled Bi2Te3 one-dimensional nanorod bundles. <i>Chemistry - A European Journal</i> , 2013 , 19, 2889-94	4.8	26
275	Highly efficient green phosphorescent OLEDs based on a novel iridium complex. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 560-565	7.1	75
274	Hybrid materials based on lanthanide organic complexes: a review. <i>Chemical Society Reviews</i> , 2013 , 42, 387-410	58.5	609
273	Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. <i>Chemical Society Reviews</i> , 2013 , 42, 5714-43	58.5	364
272	Efficient blue-emitting Ir(III) complexes with phenyl-methyl-benzimidazolyl and picolinate ligands: A DFT and time-dependent DFT study. <i>International Journal of Quantum Chemistry</i> , 2013 , 113, 1641-1649	2.1	11

271	Two high-connected metal-organic frameworks based on d10-metal clusters: syntheses, structural topologies and luminescent properties. <i>Dalton Transactions</i> , 2013 , 42, 8183-7	4.3	30
270	Graphene oxide induced formation of Pt-CeOIhybrid nanoflowers with tunable CeOIhickness for catalytic hydrolysis of ammonia borane. <i>Chemistry - A European Journal</i> , 2013 , 19, 8082-6	4.8	44
269	CeO2-based Pd(Pt) nanoparticles grafted onto Fe3O4/graphene: a general self-assembly approach to fabricate highly efficient catalysts with magnetic recyclable capability. <i>Chemistry - A European Journal</i> , 2013 , 19, 5169-73	4.8	18
268	A Series of MetalDrganic Frameworks Constructed From a V-shaped Tripodal Carboxylate Ligand: Syntheses, Structures, Photoluminescent, and Magnetic Properties. <i>Crystal Growth and Design</i> , 2013 , 13, 2756-2765	3.5	52
267	A multifunctional proton-conducting and sensing pillar-layer framework based on [24-MC-6] heterometallic crown clusters. <i>Chemical Communications</i> , 2013 , 49, 8483-5	5.8	61
266	Luminescent character of mesoporous silica with Er2O3 composite materials. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 113-122	5.3	15
265	Phase-tunable synthesis and upconversion photoluminescence of rare-earth-doped sodium scandium fluoride nanocrystals. <i>CrystEngComm</i> , 2013 , 15, 6901	3.3	21
264	Efficient red organic electroluminescent devices by doping platinum(II) Schiff base emitter into two host materials with stepwise energy levels. <i>Optics Letters</i> , 2013 , 38, 2373-5	3	28
263	Density functional theory and time-dependent density functional theory study on a series of iridium complexes with tetraphenylimidodiphosphinate ligand. <i>Journal of Physical Organic Chemistry</i> , 2013 , 26, 840-848	2.1	9
262	Semiconducting polymer dots doped with europium complexes showing ultranarrow emission and long luminescence lifetime for time-gated cellular imaging. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11294-7	16.4	85
261	Semiconducting Polymer Dots Doped with Europium Complexes Showing Ultranarrow Emission and Long Luminescence Lifetime for Time-Gated Cellular Imaging. <i>Angewandte Chemie</i> , 2013 , 125, 115	04 - 115	09
260	Effect of backward extrusion on microstructure and mechanical properties of Mgtd based alloy. <i>Materials Science & Map; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 532, 443-448	5.3	20
259	Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes. <i>Thin Solid Films</i> , 2012 , 520, 3663-3667	2.2	17
258	Selective crystallization with preferred lithium-ion storage capability of inorganic materials. <i>Nanoscale Research Letters</i> , 2012 , 7, 149	5	30
257	Folded structured graphene paper for high performance electrode materials. <i>Advanced Materials</i> , 2012 , 24, 1089-94	24	576
256	Calixarene-based nanoscale coordination cages. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1585-8	16.4	164
255	An active-site-accessible porous metal-organic framework composed of triangular building units: preparation, catalytic activity and magnetic property. <i>Chemical Communications</i> , 2012 , 48, 11118-20	5.8	63
254	Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. <i>Dalton Transactions</i> , 2012 , 41, 10472-6	4.3	91

253	Three unprecedented open frameworks based on a pyridyl-carboxylate: synthesis, structures and properties. <i>CrystEngComm</i> , 2012 , 14, 1681-1686	3.3	18	
252	Coupling Dy3 Triangles to Maximize the Toroidal Moment. <i>Angewandte Chemie</i> , 2012 , 124, 12939-1294	133.6	33	
251	Self-assembled 3D flower-like hierarchical Fe3O4/KxMnO2 coreBhell architectures and their application for removal of dye pollutants. CrystEngComm, 2012, 14, 2866	3.3	14	
250	Raisin-like rare earth doped gadolinium fluoride nanocrystals: microwave synthesis and magnetic and upconversion luminescent properties. <i>CrystEngComm</i> , 2012 , 14, 4266	3.3	29	
249	Co2GeO4 nanoplates and nano-octahedrons from low-temperature controlled synthesis and their magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 7306	3.3	11	
248	Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties. <i>CrystEngComm</i> , 2012 , 14, 2159	3.3	98	
247	Facile synthesis of Pt3Sn/graphene nanocomposites and their catalysis for electro-oxidation of methanol. <i>CrystEngComm</i> , 2012 , 14, 7137	3.3	14	
246	Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane. <i>Chemical Communications</i> , 2012 , 48, 10207-9	5.8	91	
245	Syntheses, structures, photoluminescence, and magnetic properties of (3,6)- and 4-connected lanthanide metal-organic frameworks with a semirigid tricarboxylate ligand. <i>Dalton Transactions</i> , 2012 , 41, 4772-9	4.3	45	•
244	Solvothermal synthesis of luminescent Eu(BTC)(H2O)DMF hierarchical architectures. <i>CrystEngComm</i> , 2012 , 14, 2914	3.3	38	
243	Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties. <i>Chemical Communications</i> , 2012 , 48, 2885-7	5.8	114	
242	Near-infrared luminescence of periodic mesoporous organosilicas grafted with lanthanide complexes based on visible-light sensitization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5121		57	
241	Luminescent lanthanide metal-organic frameworks with a large SHG response. <i>Chemical Communications</i> , 2012 , 48, 11139-41	5.8	56	
240	Lanthanide Anionic Metal©rganic Frameworks Containing Semirigid Tetracarboxylate Ligands: Structure, Photoluminescence, and Magnetism. <i>Crystal Growth and Design</i> , 2012 , 12, 1808-1815	3.5	99	
239	A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16920		381	
238	Syntheses, Structures, and Photoluminescent Properties of Coordination Polymers Based on 1,4-Bis(imidazol-l-yl-methyl)benzene and Various Aromatic Dicarboxylic Acids. <i>Crystal Growth and Design</i> , 2012 , 12, 253-263	3.5	83	
237	Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6819		137	
236	A series of POM/Ag-based hybrids: distinct forms and assembly of [AgxLy] complexes through combinational effects of POM and isomeric ligands. <i>CrystEngComm</i> , 2012 , 14, 6452	3.3	33	

235	Combining Coordination Modulation with AcidBase Adjustment for the Control over Size of MetalDrganic Frameworks. <i>Chemistry of Materials</i> , 2012 , 24, 444-450	9.6	177
234	Syntheses, structures and physical properties of transition metal-organic frameworks assembled from trigonal heterofunctional ligands. <i>Dalton Transactions</i> , 2012 , 41, 10412-21	4.3	53
233	Synthesis of high-quality IIIIVI semiconductor supported Au particles and their catalytic performance. <i>Catalysis Science and Technology</i> , 2012 , 2, 488	5.5	11
232	Calixarene-Based Nanoscale Coordination Cages. <i>Angewandte Chemie</i> , 2012 , 124, 1617-1620	3.6	22
231	Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 7601-7	4.8	119
230	Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. <i>ChemPhysChem</i> , 2012 , 13, 2734-8	3.2	55
229	An unusual three-dimensional self-penetrating network derived from cross-linking of two-fold interpenetrating nets via ligand-unsupported AgAg bonds: synthesis, structure, luminescence, and theoretical study. <i>New Journal of Chemistry</i> , 2012 , 36, 877	3.6	24
228	Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion. <i>Journal of Molecular Endocrinology</i> , 2012 , 48, 151-8	4.5	11
227	CRYSTALLIZATION OF OXIDES AS FUNCTIONAL MATERIALS. Functional Materials Letters, 2012 , 05, 123	30 <u>0.0</u> 2	47
226	Some Strategies for Improving the Photocatalytic Efficiency of Semiconductor Photocatalyst. <i>Reviews in Advanced Sciences and Engineering</i> , 2012 , 1, 165-172		4
226		3.3	19
	Reviews in Advanced Sciences and Engineering, 2012, 1, 165-172 Three three-dimensional anionic metal®rganic frameworks with (4,8)-connected alb topology	3-3	
225	Reviews in Advanced Sciences and Engineering, 2012, 1, 165-172 Three three-dimensional anionic metal Brganic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. CrystEngComm, 2011, 13, 6057 Hierarchically structured Fe3O4 microspheres: morphology control and their application in		19
225	Reviews in Advanced Sciences and Engineering, 2012, 1, 165-172 Three three-dimensional anionic metalBrganic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. CrystEngComm, 2011, 13, 6057 Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment. CrystEngComm, 2011, 13, 642-648 Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and	3.3	19 77
225 224 223	Three three-dimensional anionic metal Drganic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. <i>CrystEngComm</i> , 2011 , 13, 6057 Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment. <i>CrystEngComm</i> , 2011 , 13, 642-648 Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21567-21573 Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile	3.3	19 77 272
225 224 223 222	Three three-dimensional anionic metalliganic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. <i>CrystEngComm</i> , 2011 , 13, 6057 Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment. <i>CrystEngComm</i> , 2011 , 13, 642-648 Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21567-21573 Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process. <i>Inorganic Chemistry</i> , 2011 , 50, 5327-9 Porous Co3O4 microcubes: hydrothermal synthesis, catalytic and magnetic properties.	3.8 5.1	19 77 272 12
225 224 223 222	Three three-dimensional anionic metalligranic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. <i>CrystEngComm</i> , 2011 , 13, 6057 Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment. <i>CrystEngComm</i> , 2011 , 13, 642-648 Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21567-21573 Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process. <i>Inorganic Chemistry</i> , 2011 , 50, 5327-9 Porous Co3O4 microcubes: hydrothermal synthesis, catalytic and magnetic properties. <i>CrystEngComm</i> , 2011 , 13, 2123 Microwave-assisted synthesis of hydrophilic BaYF5:Tb/Ce,Tb green fluorescent colloid	3.3 3.8 5.1 3.3	19 77 272 12 58 26

(2011-2011)

217	Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures. <i>Journal of Power Sources</i> , 2011 , 196, 8618-8624	8.9	50	
216	Novel Holmium (Ho) and Praseodymium (Pr) ternary complexes with fluorinated-ligand and 4,5-diazafluoren-9-one. <i>Materials Letters</i> , 2011 , 65, 1642-1644	3.3	13	
215	Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. <i>Journal of Pathology</i> , 2011 , 225, 544-53	9.4	92	
214	Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand. <i>Advanced Materials</i> , 2011 , 23, 4041-6	24	265	
213	Synthesis of ferrite nanocrystals stabilized by ionic-liquid molecules through a thermal decomposition route. <i>Chemistry - A European Journal</i> , 2011 , 17, 920-4	4.8	8	
212	A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2011 , 47, 5551-3	5.8	321	
211	Rhombic dodecahedral Fe3O4: ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties. <i>CrystEngComm</i> , 2011 , 13, 6017	3.3	38	
210	Mn4-hinged bithiacalix[4]arenes accommodating fullerenes. <i>Dalton Transactions</i> , 2011 , 40, 1849-51	4.3	11	
209	Eu3+ doped Sr2CeO4 phosphors for thermometry: single-color or two-color fluorescence based temperature characterization. <i>RSC Advances</i> , 2011 , 1, 298	3.7	24	
208	Fabrication of fluorescent silica-Au hybrid nanostructures for targeted imaging of tumor cells. <i>Dalton Transactions</i> , 2011 , 40, 4800-2	4.3	14	
207	Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals. <i>CrystEngComm</i> , 2011 , 13, 2935	3.3	31	
206	Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes. <i>CrystEngComm</i> , 2011 , 13, 1786	3.3	29	
205	Surfactant-free preparation of NiO nanoflowers and their lithium storage properties. <i>CrystEngComm</i> , 2011 , 13, 4903	3.3	33	
204	Cobalt and nickel with various morphologies: mineralizer-assisted synthesis, formation mechanism, and magnetic properties. <i>CrystEngComm</i> , 2011 , 13, 223-229	3.3	15	
203	Improved color purity and electroluminescent efficiency obtained by modulating thicknesses and evaporation rates of hole block and electron transport layers. <i>Applied Surface Science</i> , 2011 , 257, 3033	-36 <u>3</u> 8	4	
202	Synthesis and luminescent properties of organicIhorganic hybrid macroporous materials doped with lanthanide (Eu/Tb) complexes. <i>Optical Materials</i> , 2011 , 33, 582-585	3.3	18	
201	Photophysical properties of a series of high luminescent europium complexes with fluorinated ligands. <i>Journal of Luminescence</i> , 2011 , 131, 328-335	3.8	24	
200	NIR-luminescence from ternary lanthanide [HoIII, PrIII and TmIII] complexes with 1-(2-naphthyl)-4,4,4-trifluoro-1,3-butanedionate. <i>Journal of Luminescence</i> , 2011 , 131, 1857-1863	3.8	41	

199	Bioinspired Green Synthesis of Nanomaterials and their Applications. <i>Current Nanoscience</i> , 2010 , 6, 452-	·46β	9
198	Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. <i>CrystEngComm</i> , 2010 , 12, 3537	3.3	30
197	Controllable Synthesis of NIR-Luminescent ErQ3Nano-/Microstructures through Self-assembly Growth. <i>Crystal Growth and Design</i> , 2010 , 10, 4662-4667	3.5	13
196	Hierarchically Nanostructured Coordination Polymer: Facile and Rapid Fabrication and Tunable Morphologies. <i>Crystal Growth and Design</i> , 2010 , 10, 790-797	3.5	128
195	Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. <i>Dalton Transactions</i> , 2010 , 39, 9153-8	4.3	37
194	Facile synthesis of Y4O(OH)9NO3:Eu3+/Y2O3:Eu3+ nanotubes and nanobundles from nanolamellar precursors. <i>CrystEngComm</i> , 2010 , 12, 585-590	3.3	15
193	Synthesis and characterization of highly uniform Lu2O3:Ln3+ (Ln = Eu, Er, Yb) luminescent hollow microspheres. <i>CrystEngComm</i> , 2010 , 12, 2943	3.3	27
192	Synthesis and luminescent properties of orderly YPO4:Eu3+ olivary architectures self-assembled by nanoflakes. <i>CrystEngComm</i> , 2010 , 12, 4141	3.3	23
191	Near-infrared luminescence from visible-light-sensitized hybrid materials covalently linked with tris(8-hydroxyquinolinate)-lanthanide [Er(III), Nd(III), and Yb(III)] derivatives. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 16393-7	3.4	53
190	Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17084-7	16.4	195
189	High-Brightness, Broad-Spectrum White Organic Electroluminescent Device Obtained by Designing Light-Emitting Layers as also Carrier Transport Layers. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21723	- 3 1727	, 17
188	Mn(II)-based MIL-53 analogues: synthesis using neutral bridging mu2-ligands and application in liquid-phase adsorption and separation of C6-C8 aromatics. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3656-7	16.4	98
187	Shape-Controlled Synthesis and Electrical Conductivities of AgPb10SbTe12 Materials. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5827-5834	3.8	15
186	Three p-tert-butylthiacalix[4]arene-supported cobalt compounds obtained in one pot involving in situ formation of N6H2 ligand. <i>Inorganic Chemistry</i> , 2010 , 49, 7735-40	5.1	53
185	Room temperature, template-free synthesis of BiOI hierarchical structures: visible-light photocatalytic and electrochemical hydrogen storage properties. <i>Dalton Transactions</i> , 2010 , 39, 3273-8	4.3	158
184	Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission. <i>Crystal Growth and Design</i> , 2010 , 10, 16-19	3.5	102
183	White-light emission from a single-emitting-component Ca9Gd(PO4)7:Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9061		197
182	Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route. <i>Inorganic Chemistry</i> , 2010 , 49, 7721-5	5.1	82

(2010-2010)

181	Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. <i>Langmuir</i> , 2010 , 26, 3596-600	4	72
180	Facile and rapid fabrication of metalBrganic framework nanobelts and color-tunable photoluminescence properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3272		129
179	Facile synthesis and luminescent properties of flower-like LaPO4:Ln3+ (Ln = Ce, Tb) hierarchical architectures. <i>CrystEngComm</i> , 2010 , 12, 2865	3.3	21
178	Facile synthesis and luminescence of Sr(5)(PO(4))(3)Cl:Eu(2+) nanorod bundles via a hydrothermal route. <i>Inorganic Chemistry</i> , 2010 , 49, 1674-8	5.1	50
177	Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA. <i>Nanoscale</i> , 2010 , 2, 2096-103	7.7	33
176	Tetracarboxylate-based Co(II), Ni(II) and Cu(II) three-dimensional coordination polymers: syntheses, structures and magnetic properties. <i>Dalton Transactions</i> , 2010 , 39, 9123-30	4.3	39
175	Fabrication and characterization of magnetic mesoporous silica nanospheres covalently bonded with europium complex. <i>Dalton Transactions</i> , 2010 , 39, 5166-71	4.3	15
174	Making a [Co24] metallamacrocycle from the shuttlecock-like tetranuclear cobalt-calixarene building blocks. <i>Chemical Communications</i> , 2010 , 46, 6362-4	5.8	70
173	One-pot synthesis of flowerlike Ni7S6 and its application in selective hydrogenation of chloronitrobenzene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1078-1085		66
172	A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+ions. <i>Journal of Materials Chemistry</i> , 2010 , 20, 972-975		55
171	Cubic spinel In4SnS8: electrical transport properties and electrochemical hydrogen storage properties. <i>Dalton Transactions</i> , 2010 , 39, 7021-4	4.3	10
170	Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. <i>Langmuir</i> , 2010 , 26, 5122-8	4	112
169	Hydrothermal Method Prepared Ce-P-O Catalyst for the Selective Catalytic Reduction of NO with NH3 in a Broad Temperature Range. <i>ChemCatChem</i> , 2010 , 2, 1416-1419	5.2	50
168	Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. <i>CrystEngComm</i> , 2010 , 12, 2060	3.3	61
167	Guests inducing p-sulfonatocalix[4]arenes into nanocapsule and layer structure. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 1457-1463	3.3	15
166	Uniform In2S3 octahedron-built microspheres: Bioinspired synthesis and optical properties. <i>Solid State Sciences</i> , 2010 , 12, 39-44	3.4	12
165	Synthesis, luminescence properties and energy transfer of binary and ternary rare earth complexes with aromatic acids and 1,10-phenanthroline. <i>Chinese Journal of Chemistry</i> , 2010 , 15, 242-249	4.9	7
164	Luminescence properties of sol-gel derived silica gels doped and undoped with RE-complexes(RE=Eu, Tb). <i>Chinese Journal of Chemistry</i> , 2010 , 15, 327-335	4.9	6

163	Study on the energy transfer between UO2+2 and Eu3+ in sol-gel derived titania matrix by luminescence spectroscopy. <i>Chinese Journal of Chemistry</i> , 2010 , 17, 132-136	4.9	4
162	Optical Properties and Energy Transfer of NaCaPO4:Ce3+,Tb3+ Phosphors for Potential Application in Light-Emitting Diodes. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4636-4642	2.3	135
161	Nafion Larbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Proton-Exchange-Membrane Fuel Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 4394-4399	15.6	90
160	Coordination modulation induced synthesis of nanoscale Eu(1-x)Tb(x)-metal-organic frameworks for luminescent thin films. <i>Advanced Materials</i> , 2010 , 22, 4190-2	24	287
159	Surface modification and functionalization of microporous hybrid material for luminescence sensing. <i>Chemistry - A European Journal</i> , 2010 , 16, 2125-30	4.8	68
158	Synthesis and optical properties of europium-complex-doped inorganic/organic hybrid materials built from oxo-hydroxo organotin nano building blocks. <i>Chemistry - A European Journal</i> , 2010 , 16, 1903-	1 6 .8	65
157	Highly uniform YBO3 hierarchical architectures: facile synthesis and tunable luminescence properties. <i>Chemistry - A European Journal</i> , 2010 , 16, 2930-7	4.8	53
156	Colloidal noble-metal and bimetallic alloy nanocrystals: a general synthetic method and their catalytic hydrogenation properties. <i>Chemistry - A European Journal</i> , 2010 , 16, 6251-6	4.8	34
155	Orienting Zeolite L Microcrystals with a Functional Linker. <i>Angewandte Chemie</i> , 2010 , 122, 1476-1480	3.6	23
154	Orienting zeolite L microcrystals with a functional linker. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1434-8	16.4	110
153	Bright electroluminescent devices with tunable spectra obtained by strictly controlling the doping concentration of electron injection sensitizer. <i>Journal of Luminescence</i> , 2010 , 130, 2265-2270	3.8	8
152	A study on the NIR-luminescence emitted from ternary lanthanide [Er(III), Nd(III) and Yb(III)] complexes containing fluorinated-ligand and 4,5-diazafluoren-9-one. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2010 , 214, 152-160	4.7	49
151	Photo/electroluminescence properties of an europium (III) complex doped in 4,4?-N,N?-dicarbazole-biphenyl matrix. <i>Thin Solid Films</i> , 2010 , 518, 4403-4407	2.2	7
150	Synthesis of polycrystalline nanotubular Bi2Te3. <i>Materials Chemistry and Physics</i> , 2009 , 113, 664-669	4.4	21
149	Fabrication and characterization of uniform Fe3O4 octahedral micro-crystals. <i>Materials Letters</i> , 2009 , 63, 307-309	3.3	26
148	Construction and Photoluminescence of Monophase Hybrid Materials Derived from a Urea-Based Bis-Silylated Bipyridine. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 519-523	2.3	40
147	The Reasons for Ligand-Dependent Quantum Yields and Absorption Spectrum of Four Polypyridylruthenium(II) Complexes with a Tetrazolate-Based Ligand: TDDFT Study. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4052-4061	2.3	6
146	Self-Assembly from Two-Dimensional Layered Networks to Tetranuclear Structures: Syntheses, Structures, and Properties of Four CopperThiacalix[4]arene Compounds. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4989-4994	2.3	18

(2009-2009)

145	Comparative study of electronic structure and optical properties of a series of Pt(II) complexes containing different electron-donating and -withdrawing groups: a DFT study. <i>Journal of Physical Organic Chemistry</i> , 2009 , 23, n/a-n/a	2.1	1
144	Near-infrared luminescent mesoporous MCM-41 materials covalently bonded with ternary thulium complexes. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 278-284	5.3	29
143	Novel hybrid periodic mesoporous organosilica material grafting with Tb complex: Synthesis, characterization and photoluminescence property. <i>Microporous and Mesoporous Materials</i> , 2009 , 119, 252-258	5.3	37
142	Photocatalytic activities of Sr2Ta2O7 nanosheets synthesized by a hydrothermal method. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 2113-2120	6.7	46
141	Synthesis, photophysical properties, and theoretical studies on pyrrole-containing bromo Re(I) complex. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 3742-3748	2.3	63
140	Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 435-44	<i>3</i> ·3	20
139	The near-infrared optical properties of an Nd (III) complex and its potential application in electroluminescence. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 151-153	3.1	17
138	Near-infrared luminescent properties and natural lifetime calculation of a novel Er3+ complex. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 675-677	3.1	18
137	Perfectly Hydrophobic Silicone Nanofiber Coatings: Preparation from Methyltrialkoxysilanes and Use as Water-Collecting Substrate. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8350-8356	3.8	33
136	Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2: Hierarchical Structures and Their Enhanced Photocatalytic Property. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1280-1285	3.8	180
135	1,2,3,4-Alternate double cone conformational extreme in the supramolecular assemblies of p-sulfonatocalix[8]arene. <i>CrystEngComm</i> , 2009 , 11, 1803	3.3	15
134	Synthesis, Spectroscopic Properties, and Stabilities of Ternary Europium Complex in SBA-15 and	a 0	52
	Periodic Mesoporous Organosilica: A Comparative Study. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 260	3-2610	ر
133	Molecular nanocluster with a [Sn(4)Ga(4)Zn(2)Se(20)](8-) t3 supertetrahedral core. <i>Inorganic Chemistry</i> , 2009 , 48, 4628-30)3-261(5.1	38
133 132	Molecular nanocluster with a [Sn(4)Ga(4)Zn(2)Se(20)](8-) t3 supertetrahedral core. <i>Inorganic</i>		
	Molecular nanocluster with a [Sn(4)Ga(4)Zn(2)Se(20)](8-) t3 supertetrahedral core. <i>Inorganic Chemistry</i> , 2009 , 48, 4628-30 Facile chemical conversion synthesis and luminescence properties of uniform Ln3+ (Ln = Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks. <i>Inorganic Chemistry</i> , 2009 , 48, 10193-201 Facile Hydrothermal Synthesis and Luminescent Properties of Large-Scale GdVO4:Eu3+ Nanowires.	5.1	38
132	Molecular nanocluster with a [Sn(4)Ga(4)Zn(2)Se(20)](8-) t3 supertetrahedral core. <i>Inorganic Chemistry</i> , 2009 , 48, 4628-30 Facile chemical conversion synthesis and luminescence properties of uniform Ln3+ (Ln = Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks. <i>Inorganic Chemistry</i> , 2009 , 48, 10193-201 Facile Hydrothermal Synthesis and Luminescent Properties of Large-Scale GdVO4:Eu3+ Nanowires. <i>Crystal Growth and Design</i> , 2009 , 9, 5101-5107	5.1 5.1	38 48
132 131	Molecular nanocluster with a [Sn(4)Ga(4)Zn(2)Se(20)](8-) t3 supertetrahedral core. <i>Inorganic Chemistry</i> , 2009 , 48, 4628-30 Facile chemical conversion synthesis and luminescence properties of uniform Ln3+ (Ln = Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks. <i>Inorganic Chemistry</i> , 2009 , 48, 10193-201 Facile Hydrothermal Synthesis and Luminescent Properties of Large-Scale GdVO4:Eu3+ Nanowires. <i>Crystal Growth and Design</i> , 2009 , 9, 5101-5107 Facile Surfactant- and Template-Free Synthesis and Luminescent Properties of One-Dimensional Lu2O3:Eu3+ Phosphors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 153-158 Hydrothermal Synthesis, Structures, and Luminescent Properties of Seven d10 Metal Drganic	5.1 5.1 3.5	38 48 88

127	A {Co32} nanosphere supported by p-tert-butylthiacalix[4]arene. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11650-1	16.4	219
126	Effect of secondary ligands' size on energy transfer and electroluminescent efficiencies for a series of europium(III) complexes, a density functional theory study. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9687-95	3.6	42
125	Uniform Lanthanide Orthoborates LnBO3 (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) Microplates: General Synthesis and Luminescence Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16638-16644	3.8	49
124	General and Facile Method To Prepare Uniform Y2O3:Eu Hollow Microspheres. <i>Crystal Growth and Design</i> , 2009 , 9, 301-307	3.5	152
123	Self-Assembled Growth of AgIn(MoO4)2 Submicroplates into Hierarchical Structures and Their Near-Infrared Luminescent Properties. <i>Crystal Growth and Design</i> , 2009 , 9, 848-852	3.5	22
122	Magnesium-based 3D metal-organic framework exhibiting hydrogen-sorption hysteresis. <i>Inorganic Chemistry</i> , 2009 , 48, 8069-71	5.1	103
121	Preparation and Luminescence Properties of Hybrid Titania Immobilized with Lanthanide Complexes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3945-3949	3.8	46
120	Coordination-Induced Formation of One-Dimensional Nanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State Thermal Transformation. <i>Crystal Growth and Design</i> , 2009 , 9, 3519-3524	3.5	76
119	Assembly of discrete(H2O)16water clusters within a supramolecular compound of calixarene. <i>CrystEngComm</i> , 2009 , 11, 1213	3.3	33
118	Thiacalix[4]arene-supported planar Ln(4) (Ln = Tb(III), Dy(III)) clusters: toward luminescent and magnetic bifunctional materials. <i>Inorganic Chemistry</i> , 2009 , 48, 11743-7	5.1	137
117	3D Fe3S4 flower-like microspheres: high-yield synthesis via a biomolecule-assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties. <i>Dalton Transactions</i> , 2009 , 9246-52	4.3	92
116	Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. <i>CrystEngComm</i> , 2009 , 11, 2622	3.3	65
115	A study on the near-infrared luminescent properties of xerogel materials doped with dysprosium complexes. <i>Dalton Transactions</i> , 2009 , 6593-8	4.3	46
114	Novel Re(I) dendrimers: synthesis, characterization and theoretical studies. <i>Dalton Transactions</i> , 2009 , 10592-600	4.3	22
113	Synthesis of mesoporous LaPO4nanostructures with controllable morphologies. <i>New Journal of Chemistry</i> , 2009 , 33, 1657	3.6	21
112	Macroscopic single-crystal tubes assembled with porous supramolecular architecture of water-soluble calixarene and phenanthroline. <i>Chemical Communications</i> , 2009 , 1861-3	5.8	19
111	Interweaving of single-helical and equal double-helical chains with the same helical axis in a 3D metalBrganic framework. <i>CrystEngComm</i> , 2009 , 11, 1509	3.3	34
110	A three-dimensional metal@rganic framework based on a triazine derivative: syntheses, structure analysis, and sorption studies. <i>CrystEngComm</i> , 2009 , 11, 2254	3.3	11

(2008-2009)

109	3D metalBrganic frameworks incorporating water-soluble tetra-p-sulfonatocalix[4]arene. <i>CrystEngComm</i> , 2009 , 11, 2282	3.3	31
108	An unusual 3D polycatenane motif generated by the 2D -&D parallel -&D parallel interpenetration of (4,4) sheets. <i>CrystEngComm</i> , 2009 , 11, 2611	3.3	43
107	Synthesis, characterization and optical property of flower-like indium tin sulfide nanostructures. <i>Dalton Transactions</i> , 2009 , 1620-3	4.3	14
106	Facile synthesis of highly uniform octahedral LuVO4 microcrystals by a facile chemical conversion method. <i>CrystEngComm</i> , 2009 , 11, 2745	3.3	28
105	CuIn(WO4)2 nanospindles and nanorods: controlled synthesis and host for lanthanide near-infrared luminescence properties. <i>CrystEngComm</i> , 2009 , 11, 1987	3.3	13
104	Entangled metalorganic frameworks modulated by N-donor ligands of different conformations. <i>CrystEngComm</i> , 2009 , 11, 2425	3.3	47
103	Injection, transport, absorption and phosphorescence properties of a series of blue-emitting Ir(III) emitters in OLEDs: a DFT and time-dependent DFT study. <i>Inorganic Chemistry</i> , 2009 , 48, 7740-9	5.1	103
102	Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. <i>CrystEngComm</i> , 2009 , 11, 1857	3.3	189
101	Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)] Complexes via a Primary 即iketone Ligand: Synthesis and Photophysical Studies. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12538-12545	3.8	55
100	Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide [Er(III), Nd(III), Yb(III), Sm(III)] complexes. <i>Dalton Transactions</i> , 2009 , 2406-14	4.3	54
99	Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. <i>Cell Research</i> , 2008 , 18, 997-1006	24.7	3531
98	Electroluminescence of Hole Block Material Caused by Electron Accumulation and Hole Penetration. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15065-15070	3.8	13
97	Europium complexes immobilization on titaniavia chemical modification of titanium alkoxide. Journal of Materials Chemistry, 2008 , 18, 735		49
96	Hydrothermal Synthesis and High Photocatalytic Activity of 3D Wurtzite ZnSe Hierarchical Nanostructures. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17095-17101	3.8	100
95	A unique Mn2Gd2 tetranuclear compound of p-tert-butylthiacalix[4]arene. <i>Inorganic Chemistry</i> , 2008 , 47, 9733-5	5.1	37
94	DFT/TDDFT studies on the electronic structures and spectral properties of rhenium(I) pyridinybenzoimidazole complexes. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 11190-7	2.8	69
93	Morphology-Controlled Synthesis of Magnetites with Nanoporous Structures and Excellent Magnetic Properties. <i>Chemistry of Materials</i> , 2008 , 20, 198-204	9.6	141
92	Constructing channel structures based on the assembly of p-sulfonatocalix[4]arene nanocapsules and [M(bpdo)3]2+ (M=Cu, Zn). <i>Chemical Communications</i> , 2008 , 4918-20	5.8	23

91	Mechanisms of efficiency enhancement in the doped electroluminescent devices based on a europium complex. <i>Journal of Applied Physics</i> , 2008 , 104, 114507	2.5	14
90	Controlled synthesis of organicIhorganic hybrid nanofibers by a wet-chemical route. <i>Synthetic Metals</i> , 2008 , 158, 572-576	3.6	14
89	Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure. <i>Solid State Sciences</i> , 2008 , 10, 1299-1304	3.4	44
88	Near-infrared emission from novel Tris(8-hydroxyquinolinate)lanthanide(III) complexes-functionalized mesoporous SBA-15. <i>Langmuir</i> , 2008 , 24, 5500-7	4	80
87	Self-assembly of guest-induced calix[4]arene nanocapsules into three-dimensional molecular architecture. <i>CrystEngComm</i> , 2008 , 10, 658	3.3	12
86	Guest inducing p-sulfonatocalix[4]arene into three-dimensional capsule architecture and a mixed AB double layer framework. <i>CrystEngComm</i> , 2008 , 10, 1560	3.3	13
85	Synthesis and characterization of 1D Co/CoFe(2)O(4) composites with tunable morphologies. <i>Chemical Communications</i> , 2008 , 3570-2	5.8	12
84	Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures. <i>Chemical Communications</i> , 2008 , 1476-8	5.8	49
83	Near-Infrared Luminescence from Sol [©] Lel Materials Doped with Holmium(III) and Thulium(III) Complexes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13240-13247	3.8	36
82	One-Pot Synthesis of Silver Nanoplates and Charge-Transfer Complex Nanofibers. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13065-13069	3.8	29
81	Facile Synthesis and Optical Property of Porous Tin Oxide and Europium-Doped Tin Oxide Nanorods through Thermal Decomposition of the Organotin. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 19939-19944	3.8	14
80	Self-Assembly of p-Sulfonatocalix[4]arene and a Agfimt Coordination Polymer into a Porous Structure. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1756-1759	2.3	19
79	Lanthanide-Hinged Calixarene Bicapsules: Discrete Hexanuclear LnIII/Phenanthroline/p-Sulfonatocalix[4]arene Oligomers (Ln = Gd, Tb). <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2959-2962	2.3	19
78	Erbium-Complex-Doped Near-Infrared Luminescent and Magnetic Macroporous Materials. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 5513-5518	2.3	12
77	Rectangular AgIn(WO4)2 Nanotubes: A Promising Photoelectric Material. <i>Advanced Functional Materials</i> , 2008 , 18, 2328-2334	15.6	82
76	Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity-Free Antimony Telluride Hexagonal Nanoplates. <i>Advanced Materials</i> , 2008 , 20, 1892-1897	24	154
75	Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate)lanthanide(III) complexes. <i>Microporous and Mesoporous Materials</i> , 2008 , 115, 535-540	5.3	26
74	Synthesis and luminescence properties of hybrid organicIhorganic transparent titania thin film activated by in-situ formed lanthanide complexes. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 562-566	3.3	15

Performance of near-IR luminescent xerogel materials covalently bonded with ternary lanthanide (ErIII, NdIII, YbIII) complexes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 193, 153-1	6 0 .7	24
Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 199, 57-63	4.7	24
Synthesis and photophysical properties of novel organicIhorganic hybrid materials covalently linked to a europium complex. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 200, 318	-324	37
Syntheses, crystal structures, visible and near-IR luminescent properties of ternary lanthanide (Dy3+, Tm3+) complexes containing 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline. <i>Journal of Luminescence</i> , 2008 , 128, 1957-1964	3.8	51
Syntheses, crystal structures and near-infrared luminescent properties of holmium (Ho) and praseodymium (Pr) ternary complexes. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 531-534	3.1	32
The optical properties and the natural lifetime calculation of a Sm(III) complex. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 1284-1287	3.1	27
1.54th Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex. <i>Organic Electronics</i> , 2008 , 9, 487-494	3.5	51
Blue-light emission of mesoporous SBA-15 covalently bonded with carbazole chromophore. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 402-410	5.3	11
Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 28-	35·3	43
Template-free fabrication of hexagonal ZnO microprism with an interior space. <i>Inorganic Chemistry</i> , 2007 , 46, 8019-23	5.1	22
Luminescent Properties of Mn2+in Hexagonal Aluminates under Ultraviolet and Vacuum Ultraviolet Excitation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10657-10661	3.8	73
Synthesis, Structure, Photoluminescence, and Electroluminescence Properties of a New Dysprosium Complex. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2295-2300	3.8	6 7
Photoluminescence and electroluminescence properties of a samarium complex Sm(TTA)3phen. <i>Chemical Physics Letters</i> , 2007 , 443, 258-263	2.5	25
Near-infrared luminescent mesoporous materials covalently bonded with ternary lanthanide [Er(III), Nd(III), Yb(III), Sm(III), Pr(III)] complexes. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 156-165	5.3	110
Efficient organic electroluminescent devices based on an organosamarium complex. <i>Journal of Luminescence</i> , 2007 , 122-123, 678-682	3.8	13
Luminescence properties of Eu3+	3.8	41
Effect of silver nanoparticles on luminescent properties of europium complex in di-ureasil hybrid materials. <i>Journal of Luminescence</i> , 2007 , 122-123, 892-895	3.8	3
Change of the dominant luminescent mechanism with increasing current density in molecularly doped organic light-emitting devices. <i>Journal of Luminescence</i> , 2007 , 126, 644-652	3.8	11
	(ErIII, NdIII, YbIII) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 153-1 Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 57-63 Synthesis and photophysical properties of novel organicfinorganic hybrid materials covalently linked to a europium complex. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 318 Synthesis and photophysical properties of novel organicfinorganic hybrid materials covalently linked to a europium complex. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 318 Syntheses, crystal structures, visible and near-IR luminescent properties of ternary lanthanide (Dy3+, Tm3+) complexes containing 4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline. Journal of Luminescence, 2008, 128, 1957-1964 Syntheses, crystal structures and near-infrared luminescent properties of holmium (Ho) and praseodymium (Pr) ternary complexes. Inorganic Chemistry Communication, 2008, 11, 531-534 The optical properties and the natural lifetime calculation of a Sm(III) complex. Inorganic Chemistry Communication, 2008, 11, 1284-1287 1.54th Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex. Organic Electronics, 2008, 9, 487-494 Blue-light emission of mesoporous SBA-15 covalently bonded with carbazole chromophore. Microporous and Mesoporous Materials, 2008, 113, 402-410 Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2008, 116, 28- Template-free fabrication of hexagonal ZnO microprism with an interior space. Inorganic Chemistry, 2007, 46, 8019-23 Luminescent Properties of Mn2+in Hexagonal Aluminates under Ultraviolet and Vacuum Ultraviolet Excitation. Journal of Physical Chemistry C, 2007, 111, 2295-2300	(ErIII, NdIII, YbIII) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 153-1667 Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 57-63 Synthesis and photophysical properties of novel organicflorganic hybrid materials covalently linked to a europium complex. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 318-324 Syntheses, crystal structures, visible and near-IR luminescent properties of ternary lanthanide (Dy3+, Tm3+) complexes containing 4.4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline. Journal of Luminescence, 2008, 128, 1957-1964 Syntheses, crystal structures and near-infrared luminescent properties of holmium (Ho) and praseodymium (Pr) ternary complexes. Inorganic Chemistry Communication, 2008, 11, 531-534 The optical properties and the natural lifetime calculation of a Sm(III) complex. Inorganic Chemistry Communication, 2008, 11, 1284-1287 1.54th Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic Complex. Organic Electronics, 2008, 9, 487-494 1.54th Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex. Organic Electronics, 2008, 113, 402-410 Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2008, 116, 28-38-3 Template-free Fabrication of hexagonal ZnO microprism with an interior space. Inorganic Chemistry, 2007, 46, 8019-23 Luminescent Properties of Mn2+in Hexagonal Aluminates under Ultraviolet and Vacuum Ultraviolet Excitation. Journal of Physical Chemistry C, 2007, 111, 10657-10661 Synthesis, Structure, Photoluminescence, and Electroluminescence Properties of a New Dysprosium Complex. Journal of Physical Chemistry C, 2007, 111, 2295-2300 Photoluminescence

55	Conversion process of the dominant electroluminescence mechanism in a molecularly doped organic light-emitting device with only electron trapping. <i>Journal of Applied Physics</i> , 2007 , 102, 064504	2.5	20
54	Bifunctional magnetic-optical nanocomposites: grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. <i>Langmuir</i> , 2007 , 23, 7836-40	4	97
53	Syntheses, Structures and Near-IR Luminescent Studies on Ternary Lanthanide (ErIII, HoIII, YbIII, NdIII) Complexes Containing 4,4,5,5,6,6,6-Heptafluoro-1-(2-thienyl)hexane-1,3-dionate. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 3962-3973	2.3	106
52	Precursor induced synthesis of hierarchical nanostructured ZnO. <i>Nanotechnology</i> , 2006 , 17, 3607-12	3.4	36
51	Glycyl Glycine Templating Synthesis of Single-Crystal Silver Nanoplates. <i>Crystal Growth and Design</i> , 2006 , 6, 2155-2158	3.5	65
50	ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15847-52	3.4	134
49	Covalent linking of near-infrared luminescent ternary lanthanide (Er(3+), Nd(3+), Yb(3+)) complexes on functionalized mesoporous MCM-41 and SBA-15. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7249-58	3.4	139
48	Hexagonal Nanodisks of Cadmium Hydroxide and Oxide with Nanoporous Structure. <i>Crystal Growth and Design</i> , 2006 , 6, 915-918	3.5	68
47	Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. <i>Applied Physics Letters</i> , 2006 , 89, 123125	3.4	105
46	Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. <i>Nanotechnology</i> , 2006 , 17, 2918-2924	3.4	162
45	Carboxyl-cored dendrimer and toluene-assisted fabrication of uniform platinum nanodendrites at a water/oil interface and their potential application as a catalyst. <i>Nanotechnology</i> , 2006 , 17, 1599-606	3.4	4
44	Systematic synthesis and characterization of single-crystal lanthanide phenylphosphonate nanorods. <i>Inorganic Chemistry</i> , 2006 , 45, 1201-7	5.1	34
43	Hydrothermal synthesis of single-crystalline antimony telluride nanobelts. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16490-1	16.4	114
42	Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15278-87	3.4	257
41	Efficient electroluminescence from new lanthanide (Eu3+, Sm3+) complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 1611-8	5.1	193
40	Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 6174-82	3.4	128
39	Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method. <i>New Journal of Chemistry</i> , 2005 , 29, 1351	3.6	75
38	Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy. <i>Chemistry of Materials</i> , 2005 , 17, 5731-5736	9.6	142

(2001-2005)

Synthesis, Structure, and Luminescent Properties of Guanidinate-Based Terbium Complexes. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 1487-1491	2.3	22
Palladium nanowires stabilized by thiol-functionalized ionic liquid: seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. <i>Nanotechnology</i> , 2005 , 16, 1234-1237	3.4	60
Syntheses and crystal structures of [Mn(H2O)4(bpy)]L □4H2O, [Mn(H2O)4(bpy)]L? □4H2O and [Zn(H2O)4(bpy)]L □4H2O (H2L = succinic acid, H2L? = fumaric acid). <i>Journal of Coordination Chemistry</i> , 2004 , 57, 459-467	1.6	5
Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1005		130
In situ synthesis of monodisperse luminescent terbium complex-silica nanocomposites. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2760		18
Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network. <i>New Journal of Chemistry</i> , 2004 , 28, 1137	3.6	36
Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2279		80
Aggregation-Based Fabrication and Assembly of Roughened Composite Metallic Nanoshells: Application in Surface-Enhanced Raman Scattering. <i>Langmuir</i> , 2003 , 19, 9490-9493	4	50
Luminescent film with terbium-complex-bridged polysilsesquioxanes. <i>New Journal of Chemistry</i> , 2003 , 27, 233-235	3.6	89
Preparation and luminescence properties of ormosil hybrid materials doped with Tb(Tfacac)3phen complex via a solgel process. <i>Materials Letters</i> , 2003 , 57, 3899-3903	3.3	21
A Colloidal Templating Method To Hollow Bimetallic Nanostructures. <i>Langmuir</i> , 2003 , 19, 3074-3077	4	50
Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network. <i>Thin Solid Films</i> , 2002 , 419, 178-182	2.2	58
Electroluminescence based on a 时iketonate ternary samarium complex. <i>Journal of Materials Chemistry</i> , 2002 , 12, 919-923		86
Improved size control of large palladium nanoparticles by a seeding growth method. <i>Journal of Materials Chemistry</i> , 2002 , 12, 156-158		61
Mesostructured thin film with covalently grafted europium complex. <i>New Journal of Chemistry</i> , 2002 , 26, 674-676	3.6	28
Red electroluminescent device with europium 1,1,1-trifluoroacetylacetonate complex as emissive center. <i>Materials Letters</i> , 2002 , 53, 52-56	3.3	13
Encapsulation and luminescence of the nanostructured supramolecular material [Eu(Phen)4](NO3)3/(CH3)3SiMCM-41. <i>Materials Letters</i> , 2002 , 57, 940-945	3.3	25
A comparative study on the electroluminescence properties of some terbium 时iketonate complexes. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2615-2619		103
	European Journal of Inorganic Chemistry, 2005, 2005, 1487-1491 Palladium nanowires stabilized by thiol-functionalized ionic liquid: seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. Nanotechnology, 2005, 16, 1234-1237 Syntheses and crystal structures of [Mn(H2O)4(bpy)]L II4H2O, [Mn(H2O)4(bpy)]L II4H2O and [Zn(H2O)4(bpy)]L II4H2O (H2L = succinic acid, H2L? = fumaric acid). Journal of Coordination Chemistry, 2004, 57, 459-467 Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. Journal of Materials Chemistry, 2004, 14, 1005 In situ synthesis of monodisperse luminescent terbium complex-silica nanocomposites. Journal of Materials Chemistry, 2004, 14, 2760 Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network. New Journal of Chemistry, 2004, 28, 1137 Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 2003, 13, 2279 Aggregation-Based Fabrication and Assembly of Roughened Composite Metallic Nanoshells: Application in Surface-Enhanced Raman Scattering. Langmuir, 2003, 19, 9490-9493 Luminescent film with terbium-complex-bridged polysilsesquioxanes. New Journal of Chemistry, 2003, 27, 233-235 Preparation and luminescence properties of ormosil hybrid materials doped with Tb(Tfacac)3phen complex via a sollijel process. Materials Letters, 2003, 57, 3899-3903 A Colloidal Templating Method To Hollow Bimetallic Nanostructures. Langmuir, 2003, 19, 3074-3077 Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network. Thin Solid Films, 2002, 419, 178-182 Electroluminescence based on a #liketonate ternary samarium complex. Journal of Materials Chemistry, 2002, 12, 156-158 Mesostructured thin film with covalently grafted europium complex. New Journal of Chemistry, 2002, 26, 674-676 Encapsulation and luminescence	Palladium nanowires stabilized by thiol-functionalized ionic liquid: seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. Nanotechnology, 2005, 16, 1234-1237 Syntheses and crystal structures of [Mn(H2O)4(bpy)]L IDH2O, [Mn(H2O)4(bpy)]L IDH2O and [Zn(H2O)4(bpy)]L IDH2O (H2L = succinic acid, H2L? = fumaric acid). Journal of Coordination Chemistry, 2004, 57, 459-467 Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. Journal of Materials Chemistry, 2004, 14, 1005 In situ synthesis of monodisperse luminescent terbium complex-silica nanocomposites. Journal of Materials Chemistry, 2004, 14, 2760 Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network. New Journal of Chemistry, 2004, 28, 1137 Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 2003, 13, 2279 Aggregation-Based Fabrication and Assembly of Roughened Composite Metallic Nanoshells: Application in Surface-Enhanced Raman Scattering. Langmulr, 2003, 19, 9490-9493 4. Luminescent Film with terbium-complex-bridged polysilsesquioxanes. New Journal of Chemistry, 2003, 27, 233-235 Preparation and luminescence properties of ormosil hybrid materials doped with Tb(Tfacac)3phen complex via a soligel process. Materials Letters, 2003, 57, 3899-3903 A Colloidal Templating Method To Hollow Bimetallic Nanostructures. Langmuir, 2003, 19, 3074-3077 Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network. Thin Solid Films, 2002, 419, 178-182 Electroluminescence based on a #liketonate ternary samarium complex. Journal of Materials Chemistry, 2002, 12, 156-158 Mesostructured thin film with covalently grafted europium complex. New Journal of Chemistry, 2002, 26, 674-676 Encapsulation and luminescence of the nanostructured supramolecular material [Eu(Phen)4](NO3)3/(

19	Solgel deposition of calcium silicate red-emitting luminescent films doped with Eu3+. <i>Journal of Materials Chemistry</i> , 2001 , 11, 3382-3386		40
18	Organic template-directed crystallization of the complex fluoride NH4MnF3 with perovskite structure. <i>Chemical Communications</i> , 2001 , 1342-1343	5.8	1
17	Selective Crystallization of BaF2 under a Compressed Langmuir Monolayer of Behenic Acid. <i>Chemistry of Materials</i> , 2001 , 13, 325-328	9.6	15
16	Preparation and luminescence properties of sol-gel hybrid materials incorporated with europium complexes. <i>Journal of Materials Science</i> , 2000 , 35, 4325-4328	4.3	120
15	Aggregation behavior of amphiphilic D-EA molecules bearing recognition group. <i>Science in China Series B: Chemistry</i> , 2000 , 43, 555-560		6
14	Preparation, characterization and photophysicalproperties of layered zirconium bis(monohydrogenphosphate) intercalatedwith rare earth complexes. <i>Journal of Materials Chemistry</i> , 2000 , 10, 2532-2536		26
13	Preparation and Luminescence Properties of the Ternary Europium Complex Incorporated into an Inorganic/Polymer Matrix by a Sol-Gel Method. <i>Journal of Sol-Gel Science and Technology</i> , 1999 , 15, 49-5	5 ^{2.3}	32
12	SYNTHESIS, CRYSTAL STRUCTURE AND LUMINESCENCE STUDIES OF A LANTHANIDE COORDINATION POLYMER WITH A NEW DOUBLE BETAINE LIGAND. <i>Journal of Coordination Chemistry</i> , 1999 , 47, 145-154	1.6	12
11	Synthesis and structural characterization of a novel polymeric praseodymium(III) complex with a new flexible double betaine. <i>Journal of Chemical Crystallography</i> , 1998 , 28, 177-183	0.5	5
10	Synthesis and crystal structure of a polymeric erbium(III) Bodium(I) coordination complex of picolinic acid N-oxide. <i>Journal of Chemical Crystallography</i> , 1998 , 28, 413-418	0.5	8
9	Synthesis, Characterization, and Photophysical Properties of Rare Earth Complexes of N-Phenyl-2-aminobenzoic Acid and 1,10-Phenanthroline. <i>Monatshefte Fil Chemie</i> , 1998 , 129, 567-575	1.4	4
8	Effect of lanthanum ions on tRNAphe structure: Imino proton NMR spectroscopy. <i>Science Bulletin</i> , 1998 , 43, 490-493		
7	Synthesis, Luminescence and Intramolecular Energy Transfer of Binary and Ternary Rare Earth Complexes with Aromatic Carboxylic Acids and 1, 10-Phenanthroline. <i>Journal of the Chinese Chemical Society</i> , 1997 , 44, 567-573	1.5	6
6	Luminescence LB films of rare earth complexes with monooctadecyl phthalate. <i>Science Bulletin</i> , 1997 , 42, 825-828		9
5	Structure Determination of O-Methyllaureolol From Skimmia Laureolas sp. Multinervia by 2D HMQC and HMBC Techniques. <i>Magnetic Resonance in Chemistry</i> , 1997 , 35, 410-413	2.1	1
4	Synthesis, composition, structure and luminescence properties of M2YSbO6:R3+ (M=Ba, Ca; R=Sm, Dy, Ho, Er, Tm). <i>Journal of Luminescence</i> , 1988 , 40-41, 887-888	3.8	2
3	Boosting the Catalytic Performance of CuO x in CO 2 Hydrogenation by Incorporating CeO 2 Promoters. <i>Advanced Sustainable Systems</i> ,2100439	5.9	2
2	Embellishment of Upconversion Nanoparticles with Ultrasmall Perovskite Quantum Dots for Full-Color Tunable, Dual-Modal Luminescence Anticounterfeiting. <i>Advanced Optical Materials</i> ,2100814	8.1	9

Contribution of Hydrogen Bond Nanoarchitectonics to Switchable Photo-Thermal-Mechanical Properties of Bio-inorganic Fibers. *CCS Chemistry*,1-21

7.2 1