## Marco Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207296/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High Aspect Ratio Nanostructures Kill Bacteria <i>via</i> Storage and Release of Mechanical Energy.<br>ACS Nano, 2018, 12, 6657-6667.                                                                   | 14.6 | 120       |
| 2  | The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12598-12605.                   | 7.1  | 119       |
| 3  | Nanoparticle-Induced Permeability of Lipid Membranes. ACS Nano, 2012, 6, 10555-10561.                                                                                                                   | 14.6 | 90        |
| 4  | Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal<br>Efficiency. Nano-Micro Letters, 2018, 10, 36.                                                 | 27.0 | 68        |
| 5  | Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter, 2012, 8, 11714.                                                      | 2.7  | 44        |
| 6  | Translocation and Induced Permeability of Random Amphiphilic Copolymers Interacting with Lipid Bilayer Membranes. Biomacromolecules, 2015, 16, 125-135.                                                 | 5.4  | 40        |
| 7  | Interactions of Amphiphilic Triblock Copolymers with Lipid Membranes: Modes of Interaction and Effect on Permeability Examined by Generic Monte Carlo Simulations. Macromolecules, 2015, 48, 4724-4732. | 4.8  | 35        |
| 8  | Simulations of Protein Adsorption on Nanostructured Surfaces. Scientific Reports, 2019, 9, 4694.                                                                                                        | 3.3  | 34        |
| 9  | Critical adsorption controls translocation of polymer chains through lipid bilayers and permeation of solvent. Europhysics Letters, 2012, 98, 18003.                                                    | 2.0  | 31        |
| 10 | Polymer-decorated tethered membranes under good- and poor-solvent conditions. European Physical<br>Journal E, 2010, 31, 383-392.                                                                        | 1.6  | 27        |
| 11 | Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.                                                      | 1.6  | 23        |
| 12 | Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer.<br>ACS Nano, 2018, 12, 12042-12049.                                                                      | 14.6 | 20        |
| 13 | Pillars of Life: Is There a Relationship between Lifestyle Factors and the Surface Characteristics of<br>Dragonfly Wings?. ACS Omega, 2018, 3, 6039-6046.                                               | 3.5  | 19        |
| 14 | Single polymer chains in poor solvent: Using the bond fluctuation method with explicit solvent.<br>Journal of Chemical Physics, 2013, 138, 094902.                                                      | 3.0  | 18        |
| 15 | The pyrrolopyrimidine colchicine-binding site agent PP-13 reduces the metastatic dissemination of invasive cancer cells in vitro and in vivo. Biochemical Pharmacology, 2019, 160, 1-13.                | 4.4  | 17        |
| 16 | Dynamic studies of the interaction of a pH responsive, amphiphilic polymer with a DOPC lipid membrane. Soft Matter, 2017, 13, 3690-3700.                                                                | 2.7  | 16        |
| 17 | High-throughput 3D visualization of nanoparticles attached to the surface of red blood cells.<br>Nanoscale, 2019, 11, 2282-2288.                                                                        | 5.6  | 12        |
| 18 | Protein corona modulates interaction of spiky nanoparticles with lipid bilayers. Journal of Colloid and Interface Science, 2021, 603, 550-558.                                                          | 9.4  | 12        |

MARCO WERNER

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structure and Chemical Organization in Damselfly Calopteryx haemorrhoidalis Wings: A Spatially Resolved FTIR and XRF Analysis with Synchrotron Radiation. Scientific Reports, 2018, 8, 8413. | 3.3 | 11        |
| 20 | Olympic Gels: Concatenation and Swelling. Macromolecular Symposia, 2015, 358, 140-147.                                                                                                       | 0.7 | 10        |
| 21 | Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers. Soft<br>Matter, 2018, 14, 2526-2534.                                                         | 2.7 | 10        |
| 22 | Thermal Tunneling of Homopolymers through Amphiphilic Membranes. ACS Macro Letters, 2017, 6, 247-251.                                                                                        | 4.8 | 9         |
| 23 | Unexpected Cholesterol-Induced Destabilization of Lipid Membranes near Transmembrane Carbon<br>Nanotubes. Physical Review Letters, 2020, 124, 038001.                                        | 7.8 | 7         |
| 24 | Shape-Adaptive Single-Chain Nanoparticles Interacting with Lipid Membranes. Macromolecules, 2019, 52, 9578-9584.                                                                             | 4.8 | 6         |
| 25 | Neural network learns physical rules for copolymer translocation through amphiphilic barriers. Npj<br>Computational Materials, 2020, 6, .                                                    | 8.7 | 5         |
| 26 | Decoding Interaction Patterns from the Chemical Sequence of Polymers Using Neural Networks. ACS<br>Macro Letters, 2021, 10, 1333-1338.                                                       | 4.8 | 4         |
| 27 | Self-organized stiffness in regular fractal polymer structures. Physical Review E, 2011, 83, 051802.                                                                                         | 2.1 | 3         |
| 28 | Bridging molecular simulation models and elastic theories for amphiphilic membranes. Journal of Chemical Physics, 2018, 149, 014902.                                                         | 3.0 | 2         |
| 29 | Study of melanin localization in the mature male <i>Calopteryx haemorrhoidalis</i> damselfly wings.<br>Journal of Synchrotron Radiation, 2018, 25, 874-877.                                  | 2.4 | 1         |