List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207273/publications.pdf Version: 2024-02-01

CALINA PSHINKO

#	Article	IF	CITATIONS
1	Extraction of Eu(III) from Aqueous Media with Zn,Al-Layered Double Hydroxide, Intercalated with EDTA lons, and Its Magnetic Composite. Radiochemistry, 2021, 63, 325-333.	0.2	4
2	Removal of Cu(II), Co(II) and Cd(II) from water solutions by layered-double hydroxides with different [Mg(II)]/[Fe(III)] molar ratios. Bulletin of Materials Science, 2020, 43, 1.	0.8	13
3	Bentonite Rock from Oglanlynski Field (Turkmenistan) and Composites Based on It as Sorbents for 90Sr. Journal of Water Chemistry and Technology, 2020, 42, 227-234.	0.2	0
4	Extraction of U(VI) from Aqueous Media with Layered Zn,Al and Mg,Al Double Hydroxides Intercalated with Citrate Ions and with Their Magnetic Nanocomposites. Radiochemistry, 2020, 62, 50-61.	0.2	9
5	Adsorption of Eu(III) from Aqueous Solutions of Zn,Al- and Mg,Al-Layered Double Hydroxides, Intercalated by Citrate Ions, and Their Magnetic Forms. Journal of Water Chemistry and Technology, 2020, 42, 79-87.	0.2	3
6	Carbonate Form of Mg,Al-Layered Double Hydroxides for Concentrating Eu(III) and Its Subsequent Analytical Determination in Natural Aqueous Media. Journal of Water Chemistry and Technology, 2020, 42, 365-372.	0.2	2
7	Antiscalants in the Process of Reverse Osmosis: Antiscaling Mechanism and Modern Problems of Application. Journal of Water Chemistry and Technology, 2020, 42, 450-464.	0.2	2
8	Principally New Technology Of Preparing Drinking Water Of Sanitary-Hygienic Purpose. Journal of Water Chemistry and Technology, 2018, 40, 11-15.	0.2	4
9	Genetically Safe Drinking Water. Requirements and Methods of Its Quality Control. Journal of Water Chemistry and Technology, 2018, 40, 16-20.	0.2	3
10	Reference Stable Water for Drinking Purposes. Journal of Water Chemistry and Technology, 2018, 40, 21-26.	0.2	1
11	Removal of Co(II), Ni(II) and Cd(II) from Aqueous Solutions by Magnetic Sorbents. Journal of Water Chemistry and Technology, 2018, 40, 279-284.	0.2	2
12	The Impact of the Mg(II)/Fe(III) Ratio in the Composition of Layered Double Hydroxides for the Removal of Phosphate–Ions from Water Media. Journal of Water Chemistry and Technology, 2018, 40, 190-195.	0.2	5
13	Removal of Radiocesium from Aqueous Media with Zinc–Aluminum Layered Double Hydroxide Intercalated with Copper(II) Hexacyanoferrate. Radiochemistry, 2018, 60, 395-399.	0.2	7
14	Magnetic Sorbents for Removing U(VI) from Aqueous Media. Radiochemistry, 2018, 60, 281-286.	0.2	4
15	The use of magnetic potassium–zinc hexacyanoferrate(II) for sorption concentration of radionuclide cesium. Journal of Water Chemistry and Technology, 2017, 39, 73-79.	0.2	3
16	Clinoptilolite/Fe3O4: a magnetic sorbent for removing 90Sr from aqueous media. Radiochemistry, 2017, 59, 495-499.	0.2	2
17	Removal of U(VI) from water media by layered doubled hydroxides of magnesium and iron. Journal of Water Chemistry and Technology, 2017, 39, 138-142.	0.2	5
18	Removal of phosphate ions from aqueous solutions Zn/Al- and Mg/Fe- by layered doubled hydroxides. Journal of Water Chemistry and Technology, 2017, 39, 268-274.	0.2	5

#	Article	IF	CITATIONS
19	Tobacco ore of the Kerch iron-ore basin as a sorbent for removing 90Sr from water medium. Journal of Water Chemistry and Technology, 2017, 39, 203-208.	0.2	Ο
20	The use of ferrocyanide Zn/Al-hydrotalcite for the sorptive concentration and radiometric determination of 137Cs in waters. Journal of Water Chemistry and Technology, 2016, 38, 77-82.	0.2	1
21	Bioleaching of heavy metals from wastewater sludge by ferrous iron oxidizing bacteria. Journal of Water Chemistry and Technology, 2016, 38, 51-55.	0.2	2
22	Processes of sorption–desorption in the Cr(Vi)–calcined Zn/Al–hydrotalcite system. Journal of Water Chemistry and Technology, 2016, 38, 1-7.	0.2	3
23	Removal of Co(II) and Pb(II) from aqueous solutions by Zn/Al-layered double hydroxide intercalated with hexacyanoferrate (II)-ions. Journal of Water Chemistry and Technology, 2016, 38, 200-206.	0.2	7
24	Removal of cesium and strontium radionuclides from aqueous media by sorption onto magnetic potassium zinc hexacyanoferrate(II). Radiochemistry, 2016, 58, 491-497.	0.2	15
25	Impact of humic acids on fluorimetric determination of phenol in aqueous solutions. Journal of Water Chemistry and Technology, 2016, 38, 106-110.	0.2	0
26	Modeling processes of sorption of U(VI) based on regularities of kinetics of reactions in solutions. Journal of Water Chemistry and Technology, 2015, 37, 68-72.	0.2	1
27	Leaching heavy metal from deposits of heavy metals with bacteria oxidizing elemental sulphur. Journal of Water Chemistry and Technology, 2015, 37, 311-316.	0.2	13
28	Removal of U(VI) from aqueous media with layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions. Radiochemistry, 2015, 57, 616-620.	0.2	11
29	Assessment of sorption of 137Cs and 90Cr in model soil-water systems. Journal of Water Chemistry and Technology, 2015, 37, 236-241.	0.2	0
30	Desorption of cesium from the surface of montmorillonite-humic acids and montmorillonite-iron hydroxide systems. Journal of Water Chemistry and Technology, 2015, 37, 128-132.	0.2	1
31	Layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions, as a sorbent for removing cesium radionuclides from aqueous solutions. Radiochemistry, 2015, 57, 259-265.	0.2	10
32	Ecological substantiation of invariably high concentrations of heavy metals in municipal wastewater sludges. Journal of Water Chemistry and Technology, 2015, 37, 206-210.	0.2	4
33	Removal of Cr(VI) from aqueous solutions by calcined Zn/Al- and Mg/Fe-hydrotalcites. Journal of Water Chemistry and Technology, 2014, 36, 257-264.	0.2	4
34	Factors affecting forms of finding Th(IV) in aqueous solutions. Journal of Water Chemistry and Technology, 2014, 36, 51-55.	0.2	2
35	Removal of toxic metals from aqueous solutions by layered double hydroxides. Journal of Water Chemistry and Technology, 2014, 36, 62-69.	0.2	5
36	Effect of humic acids and iron hydroxides deposited on the surface of clay minerals on the 137Cs immobilization. Radiochemistry, 2014, 56, 325-331.	0.2	12

#	Article	IF	CITATIONS
37	Extraction of U(VI) from aqueous media by layer double hydroxides intercalated by chelating agents. Journal of Water Chemistry and Technology, 2013, 35, 104-111.	0.2	13
38	Immobilization of salts of radioactive bottom residues in glass-ceramic matrices. Radiochemistry, 2013, 55, 436-441.	0.2	3
39	Polyacrylamide derivatives as reagents for purification of waters of U(VI) and Cr(VI). Journal of Water Chemistry and Technology, 2013, 35, 265-272.	0.2	4
40	Concentration of U(VI) on a complexing sorbent for its determination by the spectrophotometric method. Journal of Water Chemistry and Technology, 2013, 35, 145-151.	0.2	4
41	Recovery of U(VI) from aqueous media with layered double hydroxides of Zn and Al, intercalated with complexones. Radiochemistry, 2013, 55, 601-604.	0.2	12
42	Layered Double Hydroxides as Effective Adsorbents for U(VI) and Toxic Heavy Metals Removal from Aqueous Media. Journal of Chemistry, 2013, 2013, 1-9.	0.9	14
43	Sorption-desorption processes in the system of U(VI)-layered double hydroxide intercalated with EDTA. Journal of Water Chemistry and Technology, 2012, 34, 88-95.	0.2	7
44	Uranium (VI) in natural waters: Study of occurrence forms. Journal of Water Chemistry and Technology, 2012, 34, 277-283.	0.2	14
45	Immobilization of radioactive salts in stillage residues using ceramic matrices. Journal of Water Chemistry and Technology, 2012, 34, 53-60.	0.2	1
46	Layered double hydroxides intercalated with EDTA as effective sorbents for U(VI) recovery from wastewater. Radiochemistry, 2011, 53, 303-307.	0.2	25
47	Comparative research of removing ions of heavy metals from aqueous solutions with montmorillonite modified by polyethylenimine. Journal of Water Chemistry and Technology, 2011, 33, 147-152.	0.2	10
48	Removal of Cu(II), Ni(II), and Co(II) from aqueous solutions using layered double hydroxide intercalated with EDTA. Journal of Water Chemistry and Technology, 2011, 33, 288-292.	0.2	22
49	Treatment of waters containing uranium with saponite clay. Journal of Water Chemistry and Technology, 2010, 32, 10-16.	0.2	9
50	The removal of heavy metals from aqueous solutions by montmorillonite modified with polyethylenimine. Journal of Water Chemistry and Technology, 2010, 32, 67-72.	0.2	6
51	Influence of the nature of oxygen-containing minerals on their sorption ability toward U(VI). Radiochemistry, 2010, 52, 284-290.	0.2	3
52	Montmorillonite modified with polyethylenimines as a sorbent for recovering U(VI) from wastewaters. Radiochemistry, 2010, 52, 291-298.	0.2	4
53	Treatment of radioactively contaminated waters with an increased content of salts. Journal of Water Chemistry and Technology, 2009, 31, 46-52.	0.2	8
54	Impact of humic matter on sorption of radionuclides by montmorrilonite. Journal of Water Chemistry and Technology, 2009, 31, 163-171.	0.2	10

#	Article	lF	CITATIONS
55	Calcinated hydrotalcite—a sorbent for purifying uraniferous waters. Journal of Water Chemistry and Technology, 2009, 31, 250-255.	0.2	14
56	Effect of fulvic acids on Th(IV) sorption on montmorillonite. Radiochemistry, 2009, 51, 91-95.	0.2	5
57	Glauconite as model material for examining deactivation of uranium-containing soils. Radiochemistry, 2009, 51, 104-108.	0.2	0
58	Effect of aluminum and iron hydroxides deposited on the montmorillonite surface on the U(VI) sorption. Radiochemistry, 2009, 51, 211-215.	0.2	6
59	Desorption of U(VI) from montmorillonite with aluminum and iron hydroxides deposited on its surface. Radiochemistry, 2009, 51, 301-307.	0.2	2
60	Sorption of U(VI) on montmorillonite with aluminum and iron hydroxides deposited on its surface, studied in the presence of citric and oxalic acids. Radiochemistry, 2009, 51, 378-382.	0.2	2
61	Impact of complexing agents on the processes of sorption treatment of waters containing cobalt. Journal of Water Chemistry and Technology, 2008, 30, 197-202.	0.2	3
62	Defluorination of natural waters by filtration through glauconite treated with aluminum salts. Journal of Water Chemistry and Technology, 2008, 30, 351-357.	0.2	1
63	Sorption purification of 90Sr and its immobilization on ceramic matrices. Journal of Water Chemistry and Technology, 2007, 29, 144-151.	0.2	4
64	Effects of EDTA and NTA on sorption of U(VI) on the clay fraction of soil. Radiochemistry, 2006, 48, 584-588.	0.2	8
65	Effect of Fulvic Acids on Sorption of U(VI) on Clay Minerals of Soils. Radiochemistry, 2001, 43, 528-531.	0.2	8