
Natalie Sampson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072682/publications.pdf Version: 2024-02-01

NATALLE SAMPSON

#	Article	IF	CITATIONS
1	miRâ€17, miRâ€19b, miRâ€20a, and miRâ€106a are downâ€regulated in human aging. Aging Cell, 2010, 9, 29	1-29ക.റ	338
2	Mutation of the Na-K-Cl Co-Transporter Gene Slc12a2 Results in Deafness in Mice. Human Molecular Genetics, 1999, 8, 1579-1584.	1.4	154
3	Pathophysiology of Benign Prostatic Hyperplasia and Benign Prostatic Enlargement: A Mini-Review. Gerontology, 2019, 65, 458-464.	1.4	153
4	ROS Signaling by NOX4 Drives Fibroblast-to-Myofibroblast Differentiation in the Diseased Prostatic Stroma. Molecular Endocrinology, 2011, 25, 503-515.	3.7	140
5	The ageing male reproductive tract. Journal of Pathology, 2007, 211, 206-218.	2.1	81
6	In vitro model systems to study androgen receptor signaling in prostate cancer. Endocrine-Related Cancer, 2013, 20, R49-R64.	1.6	81
7	Re-evaluation of the Role of Calcium Homeostasis Endoplasmic Reticulum Protein (CHERP) in Cellular Calcium Signaling. Journal of Biological Chemistry, 2013, 288, 355-367.	1.6	77
8	A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death and Disease, 2017, 8, e2896-e2896.	2.7	75
9	ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Molecular Carcinogenesis, 2016, 55, 27-39.	1.3	61
10	Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell, 2010, 9, 1084-1097.	3.0	57
11	Therapeutic Targeting of Redox Signaling in Myofibroblast Differentiation and Age-Related Fibrotic Disease. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-15.	1.9	53
12	Cancer-Associated Fibroblasts Modify the Response of Prostate Cancer Cells to Androgen and Anti-Androgens in Three-Dimensional Spheroid Culture. International Journal of Molecular Sciences, 2016, 17, 1458.	1.8	53
13	Dysregulation of Dkkâ€3 expression in benign and malignant prostatic tissue. Prostate, 2008, 68, 540-547.	1.2	51
14	Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Letters, 2022, 530, 156-169.	3.2	49
15	Inhibition of Nox4â€dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromalâ€mediated protumorigenic interactions. International Journal of Cancer, 2018, 143, 383-395.	2.3	48
16	Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease. BioMed Research International, 2014, 2014, 1-14.	0.9	46
17	The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. Cancer Letters, 2015, 367, 113-121.	3.2	46
18	Attenuated Proliferation and Trans-Differentiation of Prostatic Stromal Cells Indicate Suitability of Phosphodiesterase Type 5 Inhibitors for Prevention and Treatment of Benign Prostatic Hyperplasia. Endocrinology, 2010, 151, 3975-3984.	1.4	44

NATALIE SAMPSON

#	Article	IF	CITATIONS
19	SF4 and SFRS14, two related putative splicing factors on human chromosome 19p13.11. Gene, 2003, 305, 91-100.	1.0	29
20	Stromal Insulin-Like Growth Factor Binding Protein 3 (IGFBP3) Is Elevated in the Diseased Human Prostate and Promotes ex Vivo Fibroblast-to-Myofibroblast Differentiation. Endocrinology, 2013, 154, 2586-2599.	1.4	29
21	Phosphodiesterase Type 5 Inhibition Reverts Prostate Fibroblast-to-Myofibroblast Trans-Differentiation. Endocrinology, 2012, 153, 5546-5555.	1.4	28
22	GPR30 Promotes Prostate Stromal Cell Activation via Suppression of ERα Expression and Its Downstream Signaling Pathway. Endocrinology, 2016, 157, 3023-3035.	1.4	27
23	Dickkopfâ€related protein 3 promotes pathogenic stromal remodeling in benign prostatic hyperplasia and prostate cancer. Prostate, 2013, 73, 1441-1452.	1.2	26
24	PAGE4 Positivity Is Associated with Attenuated AR Signaling and Predicts Patient Survival in Hormone-Naive Prostate Cancer. American Journal of Pathology, 2012, 181, 1443-1454.	1.9	24
25	Human chorionic gonadotropin (hCG) in the male reproductive tract. Molecular and Cellular Endocrinology, 2007, 260-262, 190-196.	1.6	23
26	Comparative genomic sequencing reveals a strikingly similar architecture of a conserved syntenic region on human chromosome 11p15.3 (including gene ST5) and mouse chromosome 7. Cytogenetic and Genome Research, 2001, 93, 284-290.	0.6	18
27	p300 is upregulated by docetaxel and is a target in chemoresistant prostate cancer. Endocrine-Related Cancer, 2020, 27, 187-198.	1.6	17
28	Succinate Accumulation Is Associated with a Shift of Mitochondrial Respiratory Control and HIF-1α Upregulation in PTEN Negative Prostate Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 2129.	1.8	15
29	MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. American Journal of Pathology, 2021, 191, 1094-1107.	1.9	14
30	Attenuation of nucleoside and anti-cancer nucleoside analog drug uptake in prostate cancer cells by Cimicifuga racemosa extract BNO-1055. Phytomedicine, 2013, 20, 1306-1314.	2.3	13
31	Seminal plasma enhances and accelerates progesterone-induced decidualisation of human endometrial stromal cells. Reproduction, Fertility and Development, 2012, 24, 517.	0.1	12
32	GAGEC1, a cancer/testis associated antigen family member, is a target of TGF-β1 in age-related prostatic disease. Mechanisms of Ageing and Development, 2007, 128, 64-66.	2.2	9
33	NADPH oxidase 4 expression in the normal endometrium and in endometrial cancer. Tumor Biology, 2019, 41, 101042831983000.	0.8	8
34	Re: Delila Gasi Tandefelt, Joost L. Boormans, Hetty A. van der Korput, Guido W. Jenster, Jan Trapman. A 36-gene Signature Predicts Clinical Progression in a Subgroup of ERG-positive Prostate Cancers. Eur Urol 2013;64:941–50. European Urology, 2014, 65, e102-e103.	0.9	4